DOI QR코드

DOI QR Code

Interaction of 2-Hydroxyquinoxaline (2-HQ) on Soil Enzymes and Its Degradation: A Review

  • Received : 2020.06.10
  • Accepted : 2020.07.21
  • Published : 2020.08.31

Abstract

The United Nations project the world population to reach 10 billion by the year 2057. To increase the food of the ever-increasing world population, agrochemicals are indispensable tools to the boon in agriculture production. These agrochemicals are a serious threat to the health of humans, plants, and animals. Agrochemicals are ultimately reached to the main reservoir/sink such as soil and contaminating the groundwater, disturb the soil health and in turn a serious threat to biogeochemical cycling and the entire biosphere. Among agrochemicals, quinalphosis one of the most repeatedly and widely used insecticides in the control of a wide range of pests that attack various crops. Quinalphos is shown to be primarily toxic in organisms by acetylcholinesterase enzyme action. Hydrolysis of quinalphos produces amajor metabolite 2-hydroxyquinoxaline (2-HQ), which has shown secondary toxicity in organisms. 2-HQ is reported to be mutagenic, carcinogenic, growth inhibition and induce oxidative stress in organisms. Quinoline is a heterocyclic compound and structural resemblance of 2-HQ with minor changes, but its degradation studies are enormous compared to the 2-HQ compound. Biotic factors in fate and behavior of 2-HQ in the environment are least studied. 2-HQ interactions with soil enzymes are vary from soil to soil. Based on the toxicity of 2-HQ in our stockpile we need to isolate a handful of microorganisms to treat this persistent metabolite and also other metabolites/compounds.This brief review will be significant from the point of biological and environmental safety.

Keywords

References

  1. Ahmad, M.S., S. Zafar, M. Bibi, S. Bano, A. Wahab, A. Rahman, and M. Iqbal Choudhary. 2014. Biotransformation of androgenic steroid mesterolone with Cunninghamella blakesleeana and Macrophomina phaseolina. Steroids 82:53-59. https://doi.org/10.1016/j.steroids.2014.01.001
  2. Awasti, M.D. and A.K. Ahuja. 1989. Dissipation pattern of monocrotophos, quinalphos and phosphamidon residues on acid lime fruits and their movement behavior to fruit juice. Indian J. Hortic. 46:480-484.
  3. Babu, G.V.A.K., B.R. Reddy, G. Narasimha, and N. Sethunathan. 1998. Persistence of quinalphos and occurrence of its primary metabolite in soils. Bull. Environ. Contam. Toxicol. 60:724-731. https://doi.org/10.1007/s001289900686
  4. Bai, Y., Q. Sun, C. Zhao, D. Wen, and X. Tang. 2009. Simultaneous biodegradation of pyridine and quinoline by two mixed bacterial strains. Appl. Microbiol. Biotechnol. 82(5):963-973. https://doi.org/10.1007/s00253-009-1892-0
  5. Banerjee, K. and P. Dureja. 1999. Phototransformation of quinalphos on clay surfaces. Toxicol. Environ. Chem. 68(3-4):475-480. https://doi.org/10.1080/02772249909358679
  6. Behrends, A., R. Hardeland, H. Ness, S. Grube, B. Poeggeler, and C. Haldar. 2004. Photocatalytic actions of the pesticide metabolite 2-hydroxyquinoxaline: Destruction of antioxidant vitamins and biogenic amines - implications of organic redox cycling. Redox Rep. 9(5):279-288. https://doi.org/10.1179/135100004225006759
  7. Behrends, A., S. Riediger, S. Grube, B. Poeggeler, C. Haldar, and R. Hardeland. 2007. Photocatalytic mechanisms of indoleamine destruction by the quinalphos metabolite 2-hydroxyquinoxaline: a study on melatonin and its precursors serotonin and N-acetyl serotonin. J. Environ. Sci. Health B. 42(6):599-606. https://doi.org/10.1080/03601230701465437
  8. Bernat, P. and J. Dlugonski. 2002. Degradation of tributyltin by the filamentous fungus Cunninghamella elegans, with involvement of cytochrome P-450. Biotechnol. Lett. 24:1971-1974. https://doi.org/10.1023/A:1021177716010
  9. Blase, M., C. Bruntner, B. Tshisuaka, S. Fetzner, and F. Lingens. 1996. Cloning, expression, and sequence analysis of the three genes encoding quinoline 2-oxidor-eductase, a molybdenum-containing hydroxylase from Pseudomonas putida 86. J. Biol. Chem. 271(38):23068-23079. https://doi.org/10.1074/jbc.271.38.23068
  10. Blum, P., A. Sagner, A. Tiehm, P. M artus, T. Wendel, and P. Grathwohl. 2011. Importance of heterocyclic aromatic compounds in monitored natural attenuation for coal tar contaminated aquifers: A review. J. Contam. Hydrol. 126(3-4):181-194. https://doi.org/10.1016/j.jconhyd.2011.08.004
  11. Carvalho, M.B., S. Tavares, J. Medeiros, O. Nunez, H. Gallart-Ayala, M.C. Leitao, M.T. Galceran, A. Hursthouse, and C.S. Pereira. 2011. Degradation pathway of pentachlorophenol by Mucor plumbeus involves phase II conjugation and oxidation-reduction reactions. J. Hazard. Mater. 198:133-142. https://doi.org/10.1016/j.jhazmat.2011.10.021
  12. Chebbi, S.G. and M. David. 2009. Neurobehavioral responses of the freshwater Teleost, Cyprinus carpio L. under quinalphos intoxication. Biotechnol. Anim. Husb. 25(3-4):241-249. https://doi.org/10.2298/BAH0904241C
  13. Cruz-Morato, C., L. Ferrando-Climent, S. Rodriguez-Mozaz, D. Barcelo, E. Marco-Urrea, T. Vicent, and M. Sarra. 2013. Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolorin a fluidized bed bioreactor. Water Res. 47(14):5200-5210. https://doi.org/10.1016/j.watres.2013.06.007
  14. Cui, M.C., F.Z. Chen, J.M. Fu, G.Y. Sheng, and G.P. Sun. 2004. Microbial metabolism of quinoline by Comamonas sp. World J. Microbiol. Biotechnol. 20:539-543. https://doi.org/10.1023/B:WIBI.0000043149.61562.3f
  15. Dureja, P., S. Wallia, and S.K. Mukerjee. 1988. Multiphase photodegradation of quinalphos. Pestic. Sci. 22(4):287-295. https://doi.org/10.1002/ps.2780220402
  16. Eisentraeger, A., C. Brinkmann, H. Hollert, A. Sagner, A. Tiehm, and J. Neuwoehner. 2008. Heterocyclic compounds: toxic effects using algae, daphnids, and the Salmonella/microsome test taking methodical quantitative aspects into account. Environ. Toxicol. Chem. 27(7):1590-1596. https://doi.org/10.1897/07-201
  17. Environmental Protection Agency. 2001. Toxicological review of quinoline (Report No. CAS No.91-22-5). Washington, DC: U.S. Environmental protection agency. Retrieved from https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/1004tr.pdf
  18. Esbata, A., E. Buncel, G.W. vanLoon. 2017. MnO2 and TiO2 catalyzed the hydrolysis of quinalphos. Alq. J. Med. App. Sci.1(2):20-28. Retrieved from https://alqalam.utripoli.edu.ly/science/
  19. Felczak, A., P. Bernat, and J. Dlugonski. 2014. Biodegradation of octyltin compounds by Cochliobolus lunatus and influence of xenobiotics on fungal fatty acid composition. Process Biochem. 49(2):295-300. https://doi.org/10.1016/j.procbio.2013.12.001
  20. Felczak, A., P. Bernat, S. Rozalska, and K. Lisowska. 2016. Quinoline biodegradation by filamentous fungus Cunninghamella elegans and adaptive modifications of the fungal membrane composition. Environ. Sci. Pollut. Res. 23:8872-8880. https://doi.org/10.1007/s11356-016-6116-4
  21. Fetzner, S. 1998. Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl. Microbiol. Biotechnol. 49:237-250. https://doi.org/10.1007/s002530051164
  22. Gangireddygari, V.S.R., P.K. Kalva, K. Ntushelo, M. Bangeppagari, A.D. Tchatchou, and R.R. Bontha. 2017. Influence of environmental factors on biodegradation of quinalphos by Bacillus thuringiensis. Environ. Sci. Eur. 29:11. https://doi.org/10.1186/s12302-017-0109-x
  23. Gangireddygari, V.S.R., D. Kanderi, R. Golla, M. Bangeppagari, V.A.K.B. Gundi, K. Ntushelo, and R.R. Bontha. 2017. Biodegradation of quinalphos by a soil bacterium - Bacillus subtilis. Pak. J. Biol. Sci. 20(8):410-422. https://doi.org/10.3923/pjbs.2017.410.422
  24. Goncalves, C., A. Dimou, V. Sakkas, M.F. Alpendurada, and T.A. Albanis. 2006. Photolytic degradation of quinalphos in natural waters and on soil matrices under simulated solar irradiation. Chemosphere 64(8):1375-1382. https://doi.org/10.1016/j.chemosphere.2005.12.020
  25. Guerrero, J.M. and R.J. Reiter. 2002. Melatonin-immune system relationships. Curr. Top. Med. Chem. 2(2):167-179. https://doi.org/10.2174/1568026023394335
  26. Gupta, B., M. Rani, R. Kumar, and P. Dureja. 2011. Decay profile and metabolic pathways of quinalphos in water, soil and plants. Chemosphere 85(5):710-716. https://doi.org/10.1016/j.chemosphere.2011.05.059
  27. Haldar, C. 2002. Apoptosis, cancer, immunity and melatonin. In: C. Haldar, M . Singaravel, and S.K. Maitra (Eds.), Treatise on pineal gland and melatonin (pp. 535-542). Enfield, NH: Science Publishers.
  28. Hardeland, R., S. Burkhardt, I. Antolin, B. Fuhrberg, and A. Coto-Montes. 1999. Melatonin and 5-methoxytryptamine in the bioluminescent dinoflagellate Gonyaulax polyedra: Restoration of the circadian glow peak after suppression of indoleamine biosynthesis or oxidative stress. Adv. Exp. Med. Biol. 460:387-390.
  29. Hardeland, R. and A.Coto-Montes. 2000. Chronobiology of oxidative stress and antioxidative defense mechanisms. In: S.G. pandalai (Ed.), Recent research developments in comparative biochemistry and physiology, Vol. 1 (pp. 123-137). Trivandrum, India: Transworld Research Network.
  30. Hardeland, R., A. Coto-Montes, S.Burkhardt, and B.K. Zsizsik. 2000. Circadian rhythms and oxidative stress in non-vertebrate organisms. In: T.V. Driessche, J.L. Guisset, and G.M. Petiau-de Vries (Eds.), The redox state and circadian rhythms (pp. 121-140). Dordrecht: Springer.
  31. Hardeland, R., S.R. Pandi-Perumal, and D.P. Cardinali. 2005. Molecules in focus: Melatonin. Int. J. Biochem. Cell Biol. 38(3):313-316. https://doi.org/10.1016/j.biocel.2005.08.020
  32. Hartnik, T., H.R. Norli, T. Eggen, and G.D. Breedveld. 2007. Bioassay-directed identification of toxic organic compounds in creosote-contaminated groundwater. Chemosphere 66(3):435-443. https://doi.org/10.1016/j.chemosphere.2006.06.031
  33. Jianlong, W., Q. Xiangchun, H. Liping, Q. Yi, and W. Hegemann. 2002. Kinetics of co-metabolism of quinoline and glucose by Burkholderia pickettii. Process Biochem. 37(8):831-836. https://doi.org/10.1016/S0032-9592(01)00285-0
  34. Kaur, P. and D. Sud. 2012. Photolytic degradation of quinalphos in aqueous TiO2suspension: Reaction pathway and identification of intermediates by GC/MS. J. Mol. Catal. A Chem. 365:32-38. https://doi.org/10.1016/j.molcata.2012.08.005
  35. Kobeticova, K., Z. Simek, J. Brezovsky, and J. Hofman. 2011. Toxic effects of nine polycyclic aromatic compounds on Enchytraeus crypticus in artificial soil in relation to their properties. Ecotoxicol. Environ. Saf. 74(6):1727-1737. https://doi.org/10.1016/j.ecoenv.2011.04.013
  36. Kopecka, J., A. Rybakowas, J. Barsiene, and J. Pempkowiak. 2004. AChE levels in mussels and fish collected off Lithuania and Poland (Southern Baltic). Oceanologia 46(3):405-418.
  37. Krupinski, M., T. Janicki, B. Palecz, and J. Dlugonski. 2014. Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source. J. Hazard. Mater. 280:678-684. https://doi.org/10.1016/j.jhazmat.2014.08.060
  38. Lin, Q. and W. Jianlong. 2010. Biodegradation characteristics of quinoline by Pseudomonas putida. Bioresour. Technol. 101(19):7683-7686. https://doi.org/10.1016/j.biortech.2010.05.026
  39. Marco-Urrea, E., I. Garcia-Romera, and E. Aranda. 2015. Potential of nonligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. N. Biotechnol. 32(6):620-628. https://doi.org/10.1016/j.nbt.2015.01.005
  40. Meadow, N.D. and C.H. Barrows Jr. 1971. Studies on aging in a bdelloid rotifer. II. The effects of various environmental conditionsand maternal age on longevity and fecundity. J. Gerontol. 26(3):302-309. https://doi.org/10.1093/geronj/26.3.302.
  41. Menon, P. and M. Gopal. 2003. Dissipation of 14C-Carbaryl and quinalphos in soil under a groundnut crop (Arachis hypogaea L.) in semi-arid India. Chemosphere 53(8):1023-1031. https://doi.org/10.1016/S0045-6535(03)00671-4
  42. Meyes, P. 1985. United States Patent (Patent No: 4510137, Dated: Apr. 9, 1985). Retrieved from https://patentimages.storage.googleapis.com/34/a4/a7/7d9c6e77011381/US4510137.pdf
  43. Narahari Kumar, V. 2005. Effect of 2-hydroxyquinoxaline on soil enzyme activities. Master's thesis, Sri Krishnadevaraya University, Anantapuramu, A.P. India.
  44. Neuwoehner, J., A.K. Reineke, J. Hollender, and A. Eisentraeger. 2009. Ecotoxicity of quinoline and hydroxylated derivatives and their occurrence in groundwater of a tar-contaminated field site. Ecotoxicol. Environ. Saf. 72(3):819-827. https://doi.org/10.1016/j.ecoenv.2008.04.012
  45. O'Loughlin, E.J., S.R. Kehrmeyer, and G.K. Sims. 1996. Isolation, characterization, and substrate utilization of a quinoline-degrading bacterium. Int. Biodeterior. Biodegradation 38(2):107-118. https://doi.org/10.1016/S0964-8305(96)00032-7
  46. Padoley, K.V., S.N. Mudliar, and R.A. Pandey. 2008. Heterocyclic nitrogenous pollutants in the environment and their treatment options: An overview. Bioresour. Technol. 99(10):4029-4043. https://doi.org/10.1016/j.biortech.2007.01.047
  47. Paludo, C.R., E.A. da Silva-junior, R.A. Santos, M.T. Pupo, F.S. Emery, and N.A.J.C. Furtado. 2013. Microbial transformation of β-lapachone to its glycosides by Cunninghamella elegans ATCC 10028b. Phytochem. Lett. 6(4):657-661. https://doi.org/10.1016/j.phytol.2013.08.014
  48. Pan, G. and H.M. Dutta. 1998. The inhibition of brain acetylcholinesterase activity of juvenile largemouth bass Micropterus salmoidesby sublethal concentrations of diazinon. Environ. Res.79(2):133-137. https://doi.org/10.1006/enrs.1998.3868
  49. Pereira, W.E., C.E. Rostad, T.J. Leiker, D.M. Updegraff, and J.L. Bennett. 1988. Microbial hydroxylation of quinoline in contaminated groundwater: evidence for incorporation of the oxygen atom of water. Appl. Environ. Microbiol. 54(3):827-829. https://doi.org/10.1128/aem.54.3.827-829.1988
  50. Pimentel, D. and L. Levitan. 1986. Pesticides amount applied and amount reaching pests. BioScience 36(2):86-91. https://doi.org/10.2307/1310108
  51. Poeggeler, B., P. Durand, A. Polidori, M.A. Pappolla, I. Vega-Naredo, A. Coto-Montes, J. Boker, R. Hardeland, and B. Pucci. 2005. Mitochondrial medicine: Neuroprotection and life extension by the new amphiphilic nitrone LBPNAH acting as a highly potent antioxidant agent. J. Neurochem. 95(4):96-973. https://doi.org/10.1111/j.1471-4159.2005.03425.x
  52. Poeggeler, B. and R. Hardeland. 2001. Observations on melatonin oxidation and metabolite release by unicellular organisms and small aquatic metazoans. In: R. Hardeland (Ed.), Actions and redox properties of melatonin and other aromatic amino acid metabolites (pp. 66-69). Gottingen, Germany: Cuvillier.
  53. Pothuluri, J.V., F.E. Evans, T.M. Heinze, P.P. Fu, and C.E. Cerniglia. 1996. Fungal metabolism of 2-nitrofluorene. J. Toxicol. Environ. Health 47(6):587-599. https://doi.org/10.1080/009841096161555
  54. Ramakrishnan, B., M. Megharaj, K. Venkateswarlu, R. Naidu, and N. Sethunathan. 2010. The impacts of environmental pollutants on microalgae and cyanobacteria. Crit. Rev. Environ. Sci. Technol. 40(8):699-821. https://doi.org/10.1080/10643380802471068
  55. Reineke, A.K., T. Goen, A. Preiss, and J. Hollender. 2007. Quinoline and derivatives at a tar oil contaminated site: hydroxylated products as indicator for natural attenuation? Environ. Sci.Technol. 41(15):5314-5322. https://doi.org/10.1021/es070405k
  56. Riediger, S., A. Behrends, B. Croll, I. Vega-Naredo, N. Hanig, B. Poeggeler, J. Boker, S. Grube, J. Gipp, A. Coto-Montes, C. Haldar, and R. Hardeland. 2007. Toxicity of the quinalphos metabolite 2-hydroxyquinoxaline: Growth inhibition, induction of oxidative stress and genotoxicity in test organisms. Environ. Toxicol. 22(1):33-43. https://doi.org/10.1002/tox.20231
  57. Sadiqul, I.M., S.M. Kabir, Z. Ferdous, K.M. Mansura, and R.M. Khalilur. 2017. Chronic exposure to quinalphos shows biochemical changes and genotoxicity in erythrocytes of silver barb, Barbonymus gonionotus. Interdiscip. Toxicol. 10(3):99-106. https://doi.org/10.1515/intox-2017-0016
  58. Sarkar, R., K.P. Mohanakumar, and M. Chowdhury. 2000. Effects of an organophosphate pesticide, quinalphos, on the hypothalamo-pituitary-gonadal axis in adult male rat. J. Reprod. Fertil. 118(1):29-38. https://doi.org/10.1530/jrf.0.1180029
  59. Schwarz, G., E. Senghas, A. Erben, B. Schafer, F. Lingens, and H. Hoke. 1988. Microbial metabolism of quinoline and related compounds: I. Isolation and characterization of quinoline-degrading bacteria. Syst. Appl. Microbiol. 10(2):185-190. https://doi.org/10.1016/S0723-2020(88)80035-3
  60. Silman, I. and J.L. Sussman. 2005. Acetylcholinesterase: classical and non-classical functions and harmacology. Curr. Opin. Pharmacol. 5(3):293-302. https://doi.org/10.1016/j.coph.2005.01.014
  61. Sochova, I., J. Hofman, and I. Holoubek. 2011. Effects of seven organic pollutants on soil nematode Caenorhabditis elegans. Environ. Int. 33(6):798-804. https://doi.org/10.1016/j.envint.2007.03.001
  62. Subba Reddy, G.V. 2013. Bacterial degradation of an organophosphorus insecticide - Quinalphos. Doctoral dissertation, Sri Krishnadevaraya University, Anantapuramu, A.P. India.
  63. Subba Reddy, G.V., M.M. Rafi, S. Rubesh Kumar, N. Khayalethu, D.M. Rao, B. Manjunatha, G.H. Philip, and B.R. Reddy. 2016. Optimization study of 2-hydroxyquinoxaline (2-HQ) biodegradation by Ochrobactrum sp. HQ1. 3 Biotech. 6, 51. https://doi.org/10.1007/s13205-015-0358-6
  64. Subba Reddy, G.V., B.R. Reddy, and M.G. Tlou. 2014. Biodegradation of 2-hydroxyquinoxaline (2-HQ) by Bacillus sp. J. Hazard. Mater. 278:100-107. https://doi.org/10.1016/j.jhazmat.2014.05.080
  65. Sun, Q.H., Y.H. Bai, C. Zhao, Y.N. Xiao, D.H. Wen, and X.Y. Tang. 2009. Aerobic biodegradation characteristics and metabolic products of quinoline by a Pseudomonas strain. Bioresour. Technol. 100(21):5030-5036. https://doi.org/10.1016/j.biortech.2009.05.044
  66. Talwar, M.P., S.I. Mulla, and H.Z. Ninnekar. 2014. Biodegradation of organophosphorus pesticide quinalphos by Ochrobactrum strain HZM. J. Appl. Microbiol. 117(5):1283-1292. https://doi.org/10.1111/jam.12627
  67. Teixeira, H., P. Proenca, M. Alvarenga, M. Oloveira, E.P. Marques, and D.N. Vieira. 2004. Pesticide intoxications in the center of Portugal: Three years analysis. Forensic Sci. Int. 143(2-3):199-204. https://doi.org/10.1016/j.forsciint.2004.02.037
  68. Tuo, B.H., J.B. Yan, B.A. Fan, Z.H. Yang, and J.Z. Liu. 2012. Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillussp. isolated from petroleum-contaminated soil. Bioresour. Technol. 107:55-60. https://doi.org/10.1016/j.biortech.2011.12.114
  69. Vairamuthu, S. and M. Thanikachalam. 2003. The effect of quinalphos on blood and brain esterase activity in chicken. Indian Vet. J. 80(11):1160-1163.
  70. Vasilic, Z., V. Drevenkar, V. Rumenjak, B. Stengal, and Z. Frobe. 1992. Urinary excretion of diethylphosphorus metabolites in persons poisoned by quinalphos or chlorpyrifos. Arch. Environ. Contam. Toxicol. 22(4):351-357. https://doi.org/10.1007/BF00212552
  71. Venkateswarlu, K. 1993. Pesticide interactions with cyanobacteria in soil and pure culture. In: J.M. Bollag and G. Stotzky (Eds.), Soil Biochemistry, Vol. 8(pp. 137-179). New York, NY: Marcel Dekker, Inc.
  72. Vig, K., D.K. Singh, and P.K. Sharma. 2006. Endosulfan and quinalphos residues and toxicity to soil microarthropods after repeated applications in a field investigation. J. Environ. Sci. Health B 41(5):681-692. https://doi.org/10.1080/03601230600701841
  73. Wang, C., M. Zhang, F. Cheng, and Q. Geng. 2014. Biodegradation characterization and immobilized strains potential for quinoline degradation by Brevundimonassp. K4 isolated from activated sludge of coking wastewater. Biosci. Biotechnol. Biochem. 79(1):164-170. https://doi.org/10.1080/09168451.2014.952615
  74. Wang, P.Y., H. Chen, Y. Wang, Y.K. Lyu. 2020. Quinoline biodegradation characteristics of a new quinoline-degrading strain, Pseudomonas citronellolis PY1. J. Chem. Technol. Biotechnol. 95(8):2171-2179. https://doi.org/10.1002/jctb.6403
  75. World Health Organization. 2004. WHO recommended classification of pesticides by hazard and guidelines to classification.
  76. Zhu, S.N., D.Q. Liu, L. Fan, and J.R. Ni. 2008. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge. J. Hazard. Mater. 160(2-3):289-294. https://doi.org/10.1016/j.jhazmat.2008.02.112