DOI QR코드

DOI QR Code

Runner Training Angle Affects Growth of Runners in 'Seolhyang' and 'Maehyang' Strawberries

'설향'과 '매향' 딸기에서 런너 유인 각도가 런너의 생장에 미치는 영향

  • Zhao, Jin (Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University) ;
  • Li, Yali (Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University) ;
  • Park, Yoo Gyeong (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Hu, Jiangtao (Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University) ;
  • Jeong, Byoung Ryong (Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School of Gyeongsang National University)
  • 조진 (경상대학교 원예학과 대학원) ;
  • 리야리 (경상대학교 원예학과 대학원) ;
  • 박유경 (경상대학교 농업생명과학연구원) ;
  • 호강도 (경상대학교 원예학과 대학원) ;
  • 정병룡 (경상대학교 원예학과)
  • Received : 2020.03.12
  • Accepted : 2020.05.18
  • Published : 2020.07.30

Abstract

Strawberry (Fragaria × ananassa Duch.), a herbaceous perennial crop, is a popular fruit crop with high economical and nutritive values. This study was conducted to investigate the effect of the runner training angle (RTA) on the length of internodes and number of runners produced in strawberry 'Seolhyang' and 'Maehyang' in an attempt to achieve a higher production rate of runner plants and increase the propagation efficiency. Runners were trained for 30 days to grow at an angle of 0° (vertically upward), 45°, 90° (horizontal), 135°, or 180° (hanging down) from the upward vertical axis. The experiment was carried out in a glasshouse with 29/20℃ day/night temperatures, an average light intensity of 450 μmol·m-2·s-1 PPFD coming from the sun, and a natural photoperiod of 12 hours. For both 'Seolhyang' and 'Maehyang', the RTA affected number and length of runners, and number and fresh and dry weights of runner plants. Training at an angle of 135° or 180° shortened length of runners and internodes in 'Seolhyang'. These RTAs also produced runner plants with the lowest fresh and dry weights in both cultivars. The RTA did not affect the runner diameter, but affected the runner morphology in both cultivars. As compared to a RTA of 135°, a 180° RTA increased number of runner plants produced, making it the most proliferative RTA.

딸기는 다년생 초본성 식물로 그 과실은 영양 가치가 높고 인기있는 고부가가치 채소작물이다. 본 연구는 딸기 품종 '설향'과 '매향'의 런너유인각도(RTA)가 절간장과 런너 발생수에 미치는 영향을 조사하여 자묘의 생산성을 높이고 번식효율을 증가시키기 위한 기초 자료를 얻고자 수행되었다. 러너를 0°(상향), 45°, 90°(수평), 135°, 또는 180°(하향)의 각도로 한 달 간 유인하였다. 이 실험은 유리온실에서 주간/야간 온도 29/20℃, 평균 광도 450 μmol m-2·s-1 PPFD의 자연광 환경에서 수행하였으며, 1일 광주기는 12시간이었다. '설향'과 '매향'에 있어서 RTA는 런너 수와 절간장에 영향을 주었으며, 자묘 수, 생체중과 건물중에 영향을 미쳤다. RTA 135° 또는 180°에서 두 품종 모두 자묘의 평균 생체중과 건물중이 가장 작았으며, '설향' 품종에서는 런너 길이와 절간장이 짧아졌다. RTA가 두 품종 모두에서 런너의 직경에는 영향을 미치지 않았지만 런너의 형태에는 영향을 미쳤다. RTA중 135°와 비교해서 180°가 가장 많은 자묘를 생산하여 가장 번식효율이 좋았다.

Keywords

References

  1. Bagchi, T.B., P. Sukul, and B. Ghosh. 2008. Biochemical changes during off-season flowering in guava (Psidium guajava L.) induced by bending and pruning. J. Trop. 46:64-66.
  2. Black, B.L., H.J. Swartz, G.F. Deitzer, B. Butler, and C.K. Chandler. 2005. The effects of conditioning strawberry plug plants under altered red/far-red light environments. Hort-Science 40:1263-1267. https://doi.org/10.21273/HORTSCI.40.5.1263
  3. Caruana, J.C., J.W. Sittmann, W. Wang, and Z. Liu. 2018. Suppressor of runnerless encodes a DELLA protein that controls runner formation for asexual reproduction in strawberry. Mol. Plant. 11:230-233. https://doi.org/10.1016/j.molp.2017.11.001
  4. Dale, A., D.C. Elfving, and C.K. Chandler. 1996. Benzyladenine and gibberellic acid increase runner production in dayneutral strawberries. HortScience 31:1190-1194. https://doi.org/10.21273/HORTSCI.31.7.1190
  5. Dubois, M., K. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith. 1951. A colorimetric method for the determination of sugars. Nature 168:167.
  6. El-Deeb, A. and F. Mohamed. 2018. Runner production of strawberry plants in soilless suspended system: Nitrogen rate, GA3 and genotype effects. Hortscience J. of Suez Canal Univ. 7:35-46. https://doi.org/10.21608/hjsc.2018.59097
  7. Gaston, A., J. Perrotte, E. Lerceteau-Kohler, M. Rousseau-Gueutin, A. Petit, M. Hernould, C. Rothan, and B. Denoyes. 2013. PFRU, a single dominant locus regulates the balance between sexual and asexual plant reproduction in cultivated strawberry. J. Exp. Bot. 64:1837-1848. https://doi.org/10.1093/jxb/ert047
  8. Givnish, T.J. 1995. Plant stems: Biomechanical adaptation for energy capture and influence on species distributions, p. 3-49. In: B. Gartner (eds.). Plant stems: Physiology and functional morphology. Academic Press, San Diego, USA.
  9. Guan, L., M. Zhao, Y. Qian, H. Yu, J. Xia, and E. Wu. 2019. Phenotypic analysis combined with tandem mass tags (TMT) labeling reveal the heterogeneity of strawberry stolon buds. BMC Plant Biol. 19:505. https://doi.org/10.1186/s12870-019-2096-0
  10. Han, H.H., C. Coutand, H. Cochard, C. Trottier, and P.E. Lauri. 2007. Effects of shoot bending on lateral fate and hydraulics: Invariant and changing traits across five apple genotypes. J. Exp. Bot. 58:3537-3547. https://doi.org/10.1093/jxb/erm200
  11. Heide, O.M. and A. Sonsteby. 2007. Interactions of temperature and photoperiod in the control of flowering of latitudinal and altitudinal populations of wild strawberry (Fragaria vesca). Physiol. Plant. 130:280-289. https://doi.org/10.1111/j.1399-3054.2007.00906.x
  12. Hytonen, T. 2009. Regulation of strawberry growth and development. PhD Diss., Helsinki Univ., Helsinki. p. 12-14.
  13. Ito, A., H. Yaegaki, H. Hayama, S. Kusaba, I. Yamaguchi, and H. Yoshioka. 1999. Bending shoots stimulates flowering and influences hormone levels in lateral buds of Japanese pear. HortScience 34:1224-1228. https://doi.org/10.21273/HORTSCI.34.7.1224
  14. Ito, A., H. Yoshioka, H. Hayama, and Y. Kashimura. 2001. Effect of shoot bending on endogenous auxin and cytokinin levels in buds, and its possible relationship to flower bud formation in Japanese pear. IX International Symposium on Plant Bioregulators in Fruit Production 653:57-62.
  15. Ito, A, H. Yoshioka, H. Hayama, and Y. Kashimura. 2004. Reorientation of shoots to the horizontal position influences the sugar metabolism of lateral buds and shoot internodes in Japanese pear (Pyrus pyrifolia (Burm.) Nak.). J. Hortic. Sci. Biotech. 79:416-422. https://doi.org/10.1080/14620316.2004.11511783
  16. Kim, S.K., M.S. Jeong, S.W. Park, M.J. Kim, H.Y. Na, and C.H. Chun. 2010. Improvement of runner plant production by increasing photosynthetic photon flux during strawberry transplant propagation in a closed transplant production system. Hortic. Sci. Technol. 28:535-539.
  17. Kitazawa, D., Y. Miyazawa, N. Fujii, A. Hoshino, S. Iida, E. Nitasaka, and H. Takahashi. 2008. The gravity-regulated growth of axillary buds is mediated by a mechanism different from decapitation-induced release. Plant Cell Physiol. 49:891-900. https://doi.org/10.1093/pcp/pcn063
  18. Lauri, P.E., J. Claverie, and J.M. Lespinasse. 1998. The effects of bending on the growth and fruit production of inra fercer(R) sweet cherry. III International Cherry Symposium 468: 411-418.
  19. Li, P., Y.Wang, Q. Qian, Z. Fu, M. Wang, D. Zeng, B. Li, X. Wang, and J. Li. 2007. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res. 17:402-410. https://doi.org/10.1038/cr.2007.38
  20. Liu, C., Z. Guo, Y.G. Park, H. Wei, B.R. Jeong. 2019. PGR and its application method affect number and length of runners produced in ‘Maehyang’and ‘Sulhyang’ strawberries. Agronomy 9:59. https://doi.org/10.3390/agronomy9020059
  21. Liu, F.Y. and Y.S. Chang. 2011. Effects of shoot bending on ACC content, ethylene production, growth and flowering of bougainvillea. Plant Growth Regul. 63:37-44. https://doi.org/10.1007/s10725-010-9509-2
  22. Neri, D., N. Sugiyama, T. Iwama, and H. Akagi. 2003. Effect of apical pinching on the development of axillary buds in strawberry plants. J. Jpn. Soc. Hortic. Sci. 72:389-392. https://doi.org/10.2503/jjshs.72.389
  23. Nyman, M. and A. Wallin. 1992. Improved culture technique for strawberry (Fragaria ${\times}$ ananassa Duch.) protoplasts and the determination of DNA content in protoplast derived plants. Plant Cell Tiss. Org. 30:127-133. https://doi.org/10.1007/BF00034306
  24. Philosoph-Hadas, S., H. Friedman, and S. Meir. 2005. Gravitropic bending and plant hormones. Vitam. Horm. 72:31-78. https://doi.org/10.1016/S0083-6729(05)72002-1
  25. Pipattanawong, N., N. Fujishige, K. Yamane, Y. Ijiro, and R. Ogata. 1996. Effects of growth regulators and fertilizer on runner production, flowering, and growth in day-neutral strawberries. Jpn. J. Trop. Agr. 40:101-105.
  26. Prasad, T.K. and M.G. Cline. 1987. The role of gravity in apical dominance: Effects of clinostating on shoot inversion-induced ethylene production, shoot elongation, and lateral bud growth. Plant Physiol. 83:505-509. https://doi.org/10.1104/pp.83.3.505
  27. Qiu, Y., S.C. Guan, C. Wen, P. Li, Z. Gao, and X. Chen. 2019. Auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. BMC Plant Biol. 19:528. https://doi.org/10.1186/s12870-019-2151-x
  28. Qureshi, K.M., S. Chughtai, U.S. Qureshi, and N.A. Abbasi. 2013. Impact of exogenous application of salt and growth regulators on growth and yield of strawberry. Pak. J. Bot. 45:1179-1185.
  29. Salleo, S., M.L. Gullo, and F. Oliveri. 1985. Hydraulic parameters measured in 1-year-old twigs of some Mediterranean species with diffuse-porous wood: Changes in hydraulic conductivity and their possible functional significance. J. Exp. Bot. 36:1-11. https://doi.org/10.1093/jxb/36.1.1
  30. Sang, D., D. Chen, G. Liu, Y. Liang, L. Huang, X. Meng, J. Chu, X. Sun, G. Dong, and Y. Yuan. 2014. Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proc. Natl. Acad. Sci. 111:11199-11204. https://doi.org/10.1073/pnas.1411859111
  31. Sanyal, D. and F. Bangerth. 1998. Stress induced ethylene evolution and its possible relationship to auxin-transport, cytokinin levels, and flower bud induction in shoots of apple seedlings and bearing apple trees. Plant Growth Regul. 24:127-134. https://doi.org/10.1023/A:1005948918382
  32. Schubert, A., C. Lovisolo, and E. Peterlunger. 1999. Shoot orientation affects vessel size, shoot hydraulic conductivity and shoot growth rate in Vitis vinifera L. Plant Cell Environ. 22:197-204. https://doi.org/10.1046/j.1365-3040.1999.00384.x
  33. Sharma, G. and M. Thakur. 2008. Evaluation of different strawberry cultivars for yield and quality characters in Himachal Pradesh. Agricultural Science Digest. 28:213-215.
  34. Smeets, L. 1982. Effect of chilling on runner formation and flower initiation in the everbearing strawberry. Sci. Hortic. 17:43-48. https://doi.org/10.1016/0304-4238(82)90060-7
  35. Takeda, F., D. Glenn, A. Callahan, J. Slovin, and G.W. Stutte. 2010. Delaying flowering in short-day strawberry transplants with photoselective nets. Int. J. Fruit Sci. 10:134-142. https://doi.org/10.1080/15538362.2010.492331
  36. Thompson, P. and C. Guttridge. 1959. Effect of gibberellic acid on the initiation of flowers and runners in the strawberry. Nature 184:72-73. https://doi.org/10.1038/184072a0
  37. Umehara, M., A. Hanada, S. Yoshida, K. Akiyama, T. Arite, N. Takeda-Kamiya, H. Magome, Y. Kamiya, K. Shirasu, and K. Yoneyama. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:95-200.
  38. Wu, C., S. Hsu, M. Chang, and W. Fang. 2009. Effect of light environment on runner plant propagation of strawberry. Acta Hortic. 907:297-302. https://doi.org/10.17660/actahortic.2011.907.48
  39. Yoshihara, T., E.P. Spalding, and M. Iino. 2013. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J. 74:267-279. https://doi.org/10.1111/tpj.12118
  40. Zheng, J., D. He, and F. Ji. 2019. Effects of light intensity and photoperiod on runner plant propagation of hydroponic strawberry transplants under LED lighting. Int. J. Agr. Biol. Eng. 12:26-31. https://doi.org/10.25165/j.ijabe.20191206.5265