DOI QR코드

DOI QR Code

Characteristics of Summertime High PM2.5 Episodes and Meteorological Relevance in Busan

부산지역 여름철 고농도 PM2.5 농도 사례와 기상학적 관련성

  • Received : 2020.04.30
  • Accepted : 2020.06.22
  • Published : 2020.07.31

Abstract

This research investigated the meteorologically relevant characteristics of high PM2.5 episodes in Busan. The number of days when daily mean PM10 concentration exceeded 100 ㎍/㎥ and the PM2.5 concentration exceeded 50 ㎍/㎥ over the last four years in Busan were 24 and 58, respectively. Haze occurrence frequency was 37.6% in winter, 27.4% in spring, 18.6% in fall, and 16.4% in summer. Asian dust occurrence frequency was 81.8% in spring, 9.1% in fall and winter, and 0% in summer. During summer in Busan, high PM2.5 episode occurred under the following meteorological conditions. 1) Daytime sea breeze. 2) Mist and haze present throuout the day. 3) Anti-cyclone located around the Korean peninsula. 4) Stable layer formed in the lower atmosphere. 5) Air parcel reached Busan by local transport rather than by long-range transport. These results indicate that understanding the meteorological relevance of high PM2.5 episodes could provide insight for establishing a strategy to control urban air quality.

Keywords

References

  1. Chun, Y. S., Lim, J. Y., Choi, B. C., 2003, The features of aerosol in Seoul by Asian dust and haze during springtime from 1998 to 2002, Kor. Meteoro. Soc., 39, 459-474.
  2. Draxler, R. R., Rolph, G. D., 2013, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT_traj.php).
  3. Fu, Q. Y., Zhuang, G. S., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T., Streets, D. G., 2008, Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China, Atmos. Environ., 42, 2023-2036. https://doi.org/10.1016/j.atmosenv.2007.12.002
  4. Hyslop, N. P., 2009, Impaired visibility: the air pollution people see, Atmos. Environ., 43, 182-195. https://doi.org/10.1016/j.atmosenv.2008.09.067
  5. Jeon, B. I., 2017, Characteristics of fine particle concentration and case during haze days in Busan, Environ. Sci. Inter., 26, 751-765. https://doi.org/10.5322/JESI.2017.26.6.751
  6. Ji, D. S., Wang, Y. S., Wang, L. L., 2012, Analysis of heavy pollution episodes in selected cities of northern China, Atmos. Environ., 50, 338-348. https://doi.org/10.1016/j.atmosenv.2011.11.053
  7. Koo, Y. S., Yun, H. Y., Choi, D. R., 2018, An Analysis of chemical and meteorological characteristics of haze events in the Seoul metropolitan area during January 12-18, 2013, Atmos. Environ., 178, 87-100. https://doi.org/10.1016/j.atmosenv.2018.01.037
  8. Korea Ministry of Environment, 2018, Press release(2018. 7. 20), 12.
  9. Lee, S. M., Ho, C. H., Choi, Y. S., 2011, High-$PM_{10}$ concentration episodes in Seoul, Korea: background sources and related meteorological conditions, Atmos. Environ., 45, 7240-7247. https://doi.org/10.1016/j.atmosenv.2011.08.071
  10. Lee, S., Ho, C. H., Lee, Y. G., Choi, H. J., Song, C. K., 2008, Influence of transboundary air pollutants from China on the high-$PM_{10}$ episode in Seoul, Korea for the period October 16-20, 2008, Atmos. Environ., 77, 430-439. https://doi.org/10.1016/j.atmosenv.2013.05.006
  11. Li, W., Liu, X., Zhang, Y., Sun, K.,, Wu, Y., Xue, R., Zeng, L., Qu, Y., An, J., 2018, Characteristics and formation mechanism of regional haze episodes in the Pearl River Delta of China, Environ., Sci., 63, 236-249. https://doi.org/10.1016/j.jes.2017.03.018
  12. Liu, D. J., Li, L., 2015, Application study of comprehensive forecasting model based on entropy weighting method on trend of $PM_{2.5}$ concentration in Guangzhou, China, Int. Environ. Res. Public Health, 12, 7085-7099. https://doi.org/10.3390/ijerph120607085
  13. Park, S. S., Yu, G. H., 2018, Effect of air stagnation conditions on mass size distributions of water-soluble aerosol particles, Kor. Atmos. Environ., 34, 418-429. https://doi.org/10.5572/KOSAE.2018.34.3.418
  14. Pathak, R. K., Wu, W. S., Wang, T., 2009, Summertime $PM_{2.5}$ ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere, Atmos. Chemi. & Phy., 9, 1711-1722. https://doi.org/10.5194/acp-9-1711-2009
  15. Ueno, H., Akiyama, K., Ishii, K., Miyoshi, T., Yokata, H., Nagoya, T., 2011, Relationship between $PM_{2.5}$ water-soluble organic carbon and oxidants in Tokyo during the summer, Jpn. Atmos. Environ., 46, 124-130.
  16. Wang, Y., Zhuang, G. S., Zhang, X. Y., Huang, K., Xu, C., Tang, A. H., Chen, J. M., An, Z. S., 2006, The ion chemistry, seasonal cycle, and sources of $PM_{2.5}$ and TSP aerosol in Shanghai, Atmos. Environ., 40, 2935-2952. https://doi.org/10.1016/j.atmosenv.2005.12.051
  17. Xu, W., Chen, H., Li, D., Zhao, F., Yang, Y., 2013, A Case study of aerosol characteristics during a haze episode over Beijing. Prog. Environ. Sci., 18, 404-411. https://doi.org/10.1016/j.proenv.2013.04.054
  18. Yao, X. H., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002, The water-soluble ionic composition of $PM_{2.5}$ in Shanghai and Beijing, China, Atmos. Environ., 36, 4223-4234. https://doi.org/10.1016/S1352-2310(02)00342-4
  19. Yoshikado, H., 2018, Occurrence conditions of high concentrations of $PM_{2.5}$ in summer mainly around the Tokyo metropolitan area, Jpn. Atmos. Environ., 53, 120-129.