DOI QR코드

DOI QR Code

선천성 근육성 사경의 추적검사에서 실시간 탄성초음파 검사의 임상적 유용성

Clinical Efficacy of Real-Time Sonoelastography for the Follow-Up of Congenital Sternocleidomastoid Muscle Torticollis

  • 정미리 (부산대학교병원 의생명연구원 영상의학과) ;
  • 이인숙 (부산대학교병원 의생명연구원 영상의학과) ;
  • 신용범 (부산대학교 의과대학 영상의학교실) ;
  • 송유선 (부산대학교병원 의생명연구원 영상의학과) ;
  • 박세경 (고신대학교 복음병원 영상의학과) ;
  • 송종운 (인제대학교 해운대백병원 영상의학과) ;
  • 문진일 (경상대학교 창원병원 영상의학과)
  • Mi ri Jeong (Department of Radiology, Pusan National University Hospital, Biomedical Research Institute) ;
  • In Sook Lee (Department of Radiology, Pusan National University Hospital, Biomedical Research Institute) ;
  • Yong Beom Shin (Department of Radiology, Pusan National University School of Medicine) ;
  • You Seon Song (Department of Radiology, Pusan National University Hospital, Biomedical Research Institute) ;
  • Sekyoung Park (Department of Radiology, Kosin University Gospel Hospital) ;
  • Jong Woon Song (Department of Radiology, Inje University Haeundae Paik Hospital) ;
  • Jin Il Moon (Department of Radiology, Gyeongsang National University Changwon Hospital)
  • 투고 : 2019.04.15
  • 심사 : 2019.07.31
  • 발행 : 2020.01.01

초록

목적 선천성 근육성 사경의 추적검사에서 근육의 탄성도 측정을 기반으로 한 실시간 탄성초음파 검사의 임상적 유용성을 알아보고자 한다. 대상과 방법 2012년 11월부터 2014년 12월까지 선천성 근육성 사경을 가진 34명의 환아(남자 23명, 여자 11명)를 대상으로 초음파와 탄성초음파 검사를 실시하였다. 목빗근의 두께, 모양(종물형, 방추형, 전체적으로 두꺼운 형)을 회색조 영상에서 평가하였으며, 탄성초음파 검사에서 색상 패턴(파란색, 50% 미만 또는 이상으로 초록색이 혼재, 초록색과 빨간색)을 분석하였다. 변형률 비도 Q-lab 소프트웨어를 통해 측정하였다. 한 명의 임상의가 목 회전과 측면 굴곡 결손을 각도를 기반으로 5등급으로 분류하였다. 초음파 소견과 임상적 소견의 상관관계를 통계적으로 분석하였다. 결과 22명은 오른쪽, 12명은 왼쪽 근육성 사경을 보였다. 선형회귀 분석에서 병측/반대측의 근육 두께 차이, 모양, 탄성 색상 패턴과 변형률 비가 임상적 점수와 통계적으로 유의미한 상관관계를 보였다. 특히 탄성 색상 패턴이 가장 유의미한 인자였다. 결론 실시간 탄성초음파 검사는 선천성 근육성 사경의 추적검사에서 신뢰할 만한 결과를 보였다.

Purpose To evaluate the clinical efficacy of real-time sonoelastography (RTS) for the follow-up of congenital muscular torticollis, based on measurements of muscle elasticity. Materials and Methods Thirty-four infants (23 male, 11 female) with congenital sternocleidomastoid (SCM) muscle torticollis underwent ultrasonography and elastography between November 2012 and December 2014. We evaluated the thickness, morphology (mass-like, fusiform, or overall thickened shape), and echogenicity of the SCM muscle on grayscale images and color patterns (homogeneous blue, mixed green < 50% and ≥ 50%, and green to red) on elastography. Strain ratios were measured using Q-lab software. A clinician classified the degree of neck rotation and side flexion deficits using a 5-point grade system based on angles of neck rotation and side flexion. Correlations between the ultrasonography and clinical findings were evaluated by statistical analysis. Results Twenty-two infants had right and 12 had left SCM torticollis, respectively. Linear regression analysis showed that involved/contralateral SCM thickness differences, morphology, elasticity color scores, and strain ratios of the affected SCM muscles were significantly correlated with neck rotation and side flexion deficit scores (p < 0.05). The elasticity color score of the affected SCM muscle was the most significant factor. Conclusion RTS might provide a reliable means for evaluating and monitoring congenital muscular torticollis.

키워드

참고문헌

  1. Porter SB, Blount BW. Pseudotumor of infancy and congenital muscular torticollis. Am Fam Physician 1995;52:1731-1736 
  2. Lee YT, Yoon K, Kim YB, Chung PW, Hwang JH, Park YS, et al. Clinical features and outcome of physiotherapy in early presenting congenital muscular torticollis with severe fibrosis on ultrasonography: a prospective study. J Pediatr Surg 2011;46:1526-1531 
  3. Yanagisawa O, Niitsu M, Kurihara T, Fukubayashi T. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: a feasibility study. Clin Radiol 2011;66:815-819 
  4. Park HJ, Kim SS, Lee SY, Lee YT, Yoon K, Chung EC, et al. Assessment of follow-up sonography and clinical improvement among infants with congenital muscular torticollis. AJNR Am J Neuroradiol 2013;34:890-894 
  5. Kwon DR, Park GY. Diagnostic value of real-time sonoelastography in congenital muscular torticollis. J Ultrasound Med 2012;31:721-727 
  6. Lee SY, Park HJ, Choi YJ, Choi SH, Kook SH, Rho MH, et al. Value of adding sonoelastography to conventional ultrasound in patients with congenital muscular torticollis. Pediatr Radiol 2013;43:1566-1572 
  7. Dudkiewicz I, Ganel A, Blankstein A. Congenital muscular torticollis in infants: ultrasound-assisted diagnosis and evaluation. J Pediatr Orthop 2005;25:812-814 
  8. Chan YL, Cheng JC, Metreweli C. Ultrasonography of congenital muscular torticollis. Pediatr Radiol 1992;22:356-360 
  9. Do TT. Congenital muscular torticollis: current concepts and review of treatment. Curr Opin Pediatr 2006;18:26-29 
  10. Cheng JC, Metreweli C, Chen TM, Tang S. Correlation of ultrasonographic imaging of congenital muscular torticollis with clinical assessment in infants. Ultrasound Med Biol 2000;26:1237-1241 
  11. Hall TJ. AAPM/RSNA physics tutorial for residents: topics in US: beyond the basics: elasticity imaging with US. Radiographics 2003;23:1657-1671 
  12. Garra BS. Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q 2007;23:255-268 
  13. Garra BS. Elastography: current status, future prospects, and making it work for you. Ultrasound Q 2011;27:177-186 
  14. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991;13:111-134 
  15. Bhatia KS, Rasalkar DD, Lee YP, Wong KT, King AD, Yuen HY, et al. Evaluation of real-time qualitative sonoelastography of focal lesions in the parotid and submandibular glands: applications and limitations. Eur Radiol 2010;20:1958-1964 
  16. Park GY, Kwon DR. Application of real-time sonoelastography in musculoskeletal diseases related to physical medicine and rehabilitation. Am J Phys Med Rehabil 2011;90:875-886 
  17. Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol 2012;85:1435-1445 
  18. Rogowska J, Patel NA, Fujimoto JG, Brezinski ME. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart 2004;90:556-562