DOI QR코드

DOI QR Code

Study on production process of graphite for biological applications of 14C-accelerator mass spectrometry

  • Ha, Yeong Su (Korea Multi-purpose Accelerator Complex (KOMAC), Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Kye-Ryung (Korea Multi-purpose Accelerator Complex (KOMAC), Korea Atomic Energy Research Institute (KAERI)) ;
  • Cho, Yong-Sub (Korea Multi-purpose Accelerator Complex (KOMAC), Korea Atomic Energy Research Institute (KAERI)) ;
  • Choe, Kyumin (Korea Multi-purpose Accelerator Complex (KOMAC), Korea Atomic Energy Research Institute (KAERI)) ;
  • Kang, Chaewon (Korea Multi-purpose Accelerator Complex (KOMAC), Korea Atomic Energy Research Institute (KAERI))
  • Received : 2020.06.15
  • Accepted : 2020.06.26
  • Published : 2020.06.30

Abstract

Accelerator mass spectrometry (AMS) is a powerful detection technique with the exquisite sensitivity and high precision compared with other traditional analytical techniques. Accelerator mass spectrometry can be widely applied in the technique of radiocarbon dating in the fields of archeology, geology and oceanography. The ability of accelerator mass spectrometry to measure rare 14C concentrations in microgram and even sub-microgram amounts suggests that extension of 14C-accelerator mass spectrometry to biomedical field is a natural and attractive application of the technology. Drug development processes are costly, risky, and time consuming. However, the use of 14C-accelerator mass spectrometry allows absorption, distribution, metabolism and excretion (ADME) studies easier to understand pharmacokinetics of drug candidates. Over the last few decades, accelerator mass spectrometry and its applications to preclinical/clinical trials have significantly increased. For accelerator mass spectrometry analysis of biological samples, graphitization processes of samples are important. In this paper, we present a detailed sample preparation procedure to apply to graphitization of biological samples for accelerator mass spectrometry.

Keywords

References

  1. Fifield LK. Accelerator mass spectrometry and its applications. Rep Prog Phys 1999;62:1223-1274. https://doi.org/10.1088/0034-4885/62/8/202
  2. Hellborg R, Skog G. Accelerator mass spectrometry. Mass Spectrom Rev 2008;27:398-427. https://doi.org/10.1002/mas.20172
  3. Kutschera W. Accelerator mass spectrometry: state of the art and perspectives. Adv Phys-X 2016;1:570-595.
  4. Dueker SR, Vuong LT, Lohstroh PN, Giacomo JA, Vogel JS. Quantifying exploratory low dose compounds in humans with AMS. Adv Drug Deliv Rev 2011;63:518-531. https://doi.org/10.1016/j.addr.2010.10.009
  5. Vogel JS. Accelerator mass spectrometry for quantitative in vivo tracing. Biotechniques 2005;38:S25-S29. https://doi.org/10.2144/05386SU04
  6. Turteltaub KW, Vogel JS. Bioanalytical applications of accelerator mass spectrometry for pharmaceutical research. Curr Pharm Des 2000;6:991-1007. https://doi.org/10.2174/1381612003400047
  7. Vuong LT, Song Q, Lee HJ, Roffel AF, Shin SH, Shin YG, Dueker SR. Opportunities in low-level radiocarbon microtracing: applications and new technology. Future Sci OA 2016;2:FSO74. https://doi.org/10.4155/fso.15.74
  8. Vogel JS, Love AH. Quantitating isotopic molecular labels with accelerator mass spectrometry. Methods Enzymol 2005;402:402-422. https://doi.org/10.1016/S0076-6879(05)02013-6
  9. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov 2010;9:203-214. https://doi.org/10.1038/nrd3078
  10. Bae SK, Shon JH. Microdosing studies using accelerator mass spectrometry as exploratory investigational new drug trials. Arch Pharm Res 2011;11:1789-1797.
  11. Seymour MA. Accelerator mass spectrometry: its role as a frontline bioanalytical technique. Bioanalysis 2011;3:2817-2823. https://doi.org/10.4155/bio.11.285
  12. Cho YS, Ha JM, Suk JK, Kim KR. Conceptual design of 110-degree bending magnet for 3-MV tandem accelerator beam line at KOMAC. Transaction of the Korean Nuclear Society Autumn Meeting 2017;17A-427.
  13. Kim SH, Kelly PB, Ortalan V, Browning ND, Clifford AJ. Quality of graphite target for biological/biomedical/environmental applications of 14C-accelerator mass spectrometry. Anal Chem 2010;82:2243-2252. https://doi.org/10.1021/ac9020769
  14. Kim SH, Kelly PB, Clifford AJ. Biological/biomedical accelerator mass spectrometry targets. 1. Optimizing the CO2 reduction step using Zinc dust. Anal Chem 2008;80:7651-7660. https://doi.org/10.1021/ac801226g
  15. Vogel JS, Nelson DE, Southon JR. 14C background levels in an accelerator mass spectrometry system. Radiocarbon 1987;29:323-333. https://doi.org/10.1017/S0033822200043733
  16. Getachew G, Kim SH, Burri BJ, Kelly PB, Haack KW, Ognibene TJ, Buchholz BA, Vogel JS, Modrow J, Clifford AJ. How to convert biological carbon into graphite for AMS. Radiocarbon 2006;48:325-336. https://doi.org/10.1017/S0033822200038789
  17. Gottschalk J, Szidat S, Michel E, Mazaud A, Salazar G, Battaglia M, Lippold J, Jaccard SL. Radiocarbon measurements of small-size foraminiferal samples with the mini carbon dating system (MICADAS) at the university of bern: implications for paleoclimate reconstructions. Radiocarbon 2018;60:469-491. https://doi.org/10.1017/rdc.2018.3
  18. Hong W, Park JH, Kim KJ, Woo HJ, Kim JK, Choi HW, Kim GD. Establishment of chemical preparation methods and development of an automated reduction system for AMS sample preparation at KIGAM. Radiocarbon 2010;52:1277-1287. https://doi.org/10.1017/s0033822200046361