Abstract
The APR1400 reactor stud holes can be stuck due to high temperatures, high pressure, prolonged engagement, and load changes according to pressure changes in the reactor. Threaded surfaces of a stud hole should be cleaned for the sealing of pressure in reactor vessel by removing any foreign materials which may exist in the stud holes. Human workers can access to the stud hole for the cleaning of stud holes manually, but the radiation exposure of human workers is increased. Robot is an effective way to work in hazardous area. So we introduced robot for the cleaning of stud holes. Localization of mobile robots is generally based on odometry, but with increased mileage, position errors can be accumulated. In order to eliminate cumulative error and to ensure stability of its driving, laser sensors and new control algorithm were utilized. The distance between the robot and the wall was measured by laser sensors, and the control algorithm was implemented so as to travel the desired trajectory by using the measured values from sensors. The performance of driving and hole sensing were verified through field application, and mobile robot was confirmed to be applicable to the APR 1400 NPP.