DOI QR코드

DOI QR Code

Novel Bacterial Surface Display System Based on the Escherichia coli Protein MipA

  • Han, Mee-Jung (Department of Biomolecular and Chemical Engineering, and Department of Nursing, Dongyang University)
  • Received : 2020.01.31
  • Accepted : 2020.04.19
  • Published : 2020.07.28

Abstract

Bacterial surface display systems have been developed for various applications in biotechnology and industry. Particularly, the discovery and design of anchoring motifs is highly important for the successful display of a target protein or peptide on the surface of bacteria. In this study, an efficient display system on Escherichia coli was developed using novel anchoring motifs designed from the E. coli mipA gene. Using the C-terminal fusion system of an industrial enzyme, Pseudomonas fluorescens lipase, six possible fusion sites, V140, V176, K179, V226, V232, and K234, which were truncated from the C-terminal end of the mipA gene (MV140, MV176, MV179, MV226, MV232, and MV234) were examined. The whole-cell lipase activities showed that MV140 was the best among the six anchoring motifs. Furthermore, the lipase activity obtained using MV140 as the anchoring motif was approximately 20-fold higher than that of the previous anchoring motifs FadL and OprF but slightly higher than that of YiaTR232. Western blotting and confocal microscopy further confirmed the localization of the fusion lipase displayed on the E. coli surface using the truncated MV140. Additionally the MV140 motif could be used for successfully displaying another industrial enzyme, α-amylase from Bacillus subtilis. These results showed that the fusion proteins using the MV140 motif had notably high enzyme activities and did not exert any adverse effects on either cell growth or outer membrane integrity. Thus, this study shows that MipA can be used as a novel anchoring motif for more efficient bacterial surface display in the biotechnological and industrial fields.

Keywords

References

  1. Lee SY, Choi JH, Xu Z. 2003. Microbial cell-surface display. Trends Biotechnol. 21: 45-52. https://doi.org/10.1016/S0167-7799(02)00006-9
  2. Wernerus H, Stahl S. 2004. Biotechnological applications for surface-engineered bacteria. Biotechnol. Appl. Biochem. 40: 209-228. https://doi.org/10.1042/BA20040014
  3. Wu CH, Mulchandani A, Chen W. 2008. Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol. 16: 181-188. https://doi.org/10.1016/j.tim.2008.01.003
  4. Kondo A, Tanaka T, Hasunuma T, Ogino C. 2010. Applications of yeast cell-surface display in bio-refinery. Recent Pat. Biotechnol. 4: 226-234. https://doi.org/10.2174/187220810793611509
  5. Kuroda K, Ueda M. 2011. Cell surface engineering of yeast for applications in white biotechnology. Biotechnol. Lett. 33: 1-9. https://doi.org/10.1007/s10529-010-0403-9
  6. Faber K, Frassen MC. 1993. Prospects for the increased application of biocatalysts in organic transformations. Trends Biotechnol. 11: 461-470. https://doi.org/10.1016/0167-7799(93)90079-O
  7. Burton SG, Cowan DA, Woodley JM. 2002. The search for the ideal biocatalyst. Nat. Biotechnol. 20:37-45. https://doi.org/10.1038/nbt0102-37
  8. Lee SH, Choi JI, Park SJ, Lee SY, Park BC. 2004. Display of bacterial lipase on the Escherichia coli cell surface by using FadL as an anchoring motif and use of the enzyme in enantioselective biocatalysis. Appl. Environ. Microbiol. 70: 5074-5080. https://doi.org/10.1128/AEM.70.9.5074-5080.2004
  9. Lee SH, Choi JI, Han MJ, Choi JH, Lee SY. 2005. Display of lipase on the cell surface of Escherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent. Biotechnol. Bioeng. 90: 223-230. https://doi.org/10.1002/bit.20399
  10. Georgiou G, Stathopoulos C, Daugherty PS, Nayak, AR, Iverson BL, Curtiss RI. 1997. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15: 29-34. https://doi.org/10.1038/nbt0197-29
  11. Jung HC, Lebeault JM, Pan JG. 1998. Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat. Biotechnol. 16: 576-580. https://doi.org/10.1038/nbt0698-576
  12. Xu Z, Lee SY. 1999. Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Appl. Environ. Microbiol. 65: 5142-5147 https://doi.org/10.1128/AEM.65.11.5142-5147.1999
  13. Benhar I. 2001. Biotechnological applications of phage and cell display. Biotechnol. Adv. 19: 1-33. https://doi.org/10.1016/S0734-9750(00)00054-9
  14. Samuelson P, Gunneriusson E, Nygren PA, Stahl S. 2002. Display of proteins on bacteria. J. Biotechnol. 96: 129-154. https://doi.org/10.1016/S0168-1656(02)00043-3
  15. Ko KC, Lee B, Cheong DE, Han Y, Choi JH, Song JJ. 2015. Bacterial cell surface display of a multifunctional cellulolytic enzyme screened from a bovine rumen metagenomic resource. J. Microbiol Biotechnol. 25: 1835-1841. https://doi.org/10.4014/jmb.1507.07030
  16. Han MJ, Lee SY, Koh ST, Noh SG, Han WH. 2010. Biotechnological applications of microbial proteomes. J. Biotechnol. 145: 341-349. https://doi.org/10.1016/j.jbiotec.2009.12.018
  17. Nhan NT, Gonzalez de Valdivia E, Gustavsson M, Hai TN, Larsson G. 2011. Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus. Microb. Cell Fact. 10: 22. https://doi.org/10.1186/1475-2859-10-22
  18. van Bloois E, Winter RT, Kolmar H, Fraaije MW. 2011. Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol. 29: 79-86. https://doi.org/10.1016/j.tibtech.2010.11.003
  19. Yim SS, An SJ, Han MJ, Choi JW, Jeong KJ. 2013. Isolation of a potential anchoring motif based on proteome analysis of Escherichia coli and its use for cell surface display. Appl. Biochem. Biotechnol. 170: 787-804. https://doi.org/10.1007/s12010-013-0236-9
  20. Han MJ, Lee SH. 2015. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT. FEMS Microbiol. Lett. 362: 1-7.
  21. Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York.
  22. Han MJ, Wang H, Beer LA, Tang HY, Herlyn M, Speicher DW. 2010. A systems biology analysis of metastatic melanoma using in-depth three-dimensional protein profiling. Proteomics 10: 4450-4462. https://doi.org/10.1002/pmic.200900549
  23. Li H, Zhang DF, Lin XM, Peng XX. 2015. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein. FEMS Microbiol. Lett. 362: 1-8.
  24. Han MJ, Lee SY, Hong SH. 2012. Comparative analysis of envelope proteomes in Escherichia coli B and K-12 strains. J. Microbiol. Biotechnol. 22: 470-478. https://doi.org/10.4014/jmb.1110.10080
  25. Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, Williams KL, Gooley AA. 2000. Proteomic analysis of the Escherichia coli outer membrane. Eur. J. Biochem. 267: 2871-2881. https://doi.org/10.1046/j.1432-1327.2000.01296.x
  26. Stenberg F, Chovanec P, Maslen SL, Robinson CV, Ilag LL, von Heijne G, et al. 2005. Protein complexes of the Escherichia coli cell envelope. J. Biol. Chem. 280: 34409-34419. https://doi.org/10.1074/jbc.M506479200
  27. Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ. 2004. PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res. 32: W400-W404. https://doi.org/10.1093/nar/gkh417
  28. Chung GH, Lee YP, Jeohn GH, Yoo OJ, Rhee JS. 1991. Cloning and nucleotide sequence of thermostable lipase gene from Pseudomonas fluorescens SIK W1. Agric. Biol. Chem. 55: 2359-2365. https://doi.org/10.1271/bbb1961.55.2359
  29. Ahn JH, Pan JG, Rhee JS. 1999. Identification of the tliDEF ABC transporter specific for lipase in Pseudomonas fluorescens SIK W1. J. Bacteriol. 181: 1847-1852. https://doi.org/10.1128/JB.181.6.1847-1852.1999
  30. van Bloois E, Winter RT, Kolmar H, Fraaije MW. 2011. Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol. 29: 79-86. https://doi.org/10.1016/j.tibtech.2010.11.003
  31. Yang Z, Liu Q, Wang Q, Zhang Y. 2008. Novel bacterial surface display systems based on outer membrane anchoring elements from the marine bacterium Vibrio anguillarum. Appl. Environ. Microbiol. 74: 4359-4365. https://doi.org/10.1128/AEM.02499-07