DOI QR코드

DOI QR Code

Diversity and Functions of Endophytic Fungi Associated with Roots and Leaves of Stipa purpurea in an Alpine Steppe at Qinghai-Tibet Plateau

  • Yang, Xiaoyan (CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Jin, Hui (CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Xu, Lihong (Qilihe District Agricultural Technology Extension Station of Lanzhou) ;
  • Cui, Haiyan (School of Forensic Medicine, Shanxi Medical University) ;
  • Xin, Aiyi (CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Liu, Haoyue (CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences) ;
  • Qin, Bo (CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences)
  • Received : 2020.02.28
  • Accepted : 2020.04.17
  • Published : 2020.07.28

Abstract

Stipa purpurea is a unique and dominant herbaceous plant species in the alpine steppe and meadows on the Qinghai-Tibet Plateau (QTP). In this work, we analyzed the composition and diversity of the culturable endophytic fungi in S. purpurea according to morphological and molecular identification. Then, we investigated the bioactivities of these fungi against plant pathogenic fungi and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) deaminase activities. A total of 323 fungal isolates were first isolated from S. purpurea, and 33 fungal taxa were identified by internal transcribed spacer primers and grouped into Ascomycota. The diversity of endophytic fungi in S. purpurea was significantly higher in roots as compared to leaves. In addition, more than 40% of the endophytic fungi carried the gene encoding for the ACCD gene. The antibiosis assay demonstrated that 29, 35, 28, 37 and 34 isolates (43.9, 53.1, 42.4, 56.1, and 51.5%) were antagonistic to five plant pathogenic fungi, respectively. Our study provided the first assessment of the diversity of culture-depending endophytic fungi of S. purpurea, demonstrated the potential application of ACCD activity and antifungal activities with potential benefits to the host plant, and contributed to high biomass production and adaptation of S. purpurea to an adverse environment.

Keywords

References

  1. Yang YQ, Li X, Kong XX, Ma L, Hu XX, Yang YP. 2015. Transcriptome analysis reveals diversified adaptation of Stipa purpurea, along a drought gradient on the Tibetan plateau. Funct. Integr. Genomics 15: 295-307. https://doi.org/10.1007/s10142-014-0419-7
  2. Liu WS, Dong M, Song ZP, Wei W. 2009. Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai-Tibet plateau. Ann. Appl. Biol. 154: 57-65. https://doi.org/10.1111/j.1744-7348.2008.00274.x
  3. Ma BB, Sun J. 2018. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecol. 18: 10. https://doi.org/10.1186/s12898-018-0165-0
  4. Zhou YL, Cheng Y, Yang YQ, Li X, Supriyo B, Sun XD. 2016. Overexpression of spcbl6, a calcineurin b-like protein of Stipa purpurea, enhanced cold tolerance and reduced drought tolerance in transgenic Arabidopsis. Mol. Biol. Rep. 43: 657-966.
  5. Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH. 2016. Diversity, distribution and biotechnological potential of endophytic fungi. Ann. Microbiol. 66: 529-542. https://doi.org/10.1007/s13213-015-1153-7
  6. Soliman SSM, Trobacer CP, Tsao R, Greenwood JS, Raizada MN. 2013. A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC Plant Biol. 13: 93. https://doi.org/10.1186/1471-2229-13-93
  7. Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX. 2010. Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. J. Plant Growth Reg. 29: 328-337. https://doi.org/10.1007/s00344-010-9139-y
  8. Xing YM, Chen J, Cui JL, Chen XM. Guo SX. 2011. Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietnam. Curr. Microbiol. 62: 1218-1224. https://doi.org/10.1007/s00284-010-9848-2
  9. Bezerra JDP, Santos MGS, Svedese VM, Lima DMM, Fernandes MJS, Paiva LM, et al. 2012. Richness of endophytic fungi isolated from Opuntia ficus-indica Mill (Cactaceae) and preliminary screening for enzyme production. World J. Microbiol. Biotechnol. 28:1989-1995. https://doi.org/10.1007/s11274-011-1001-2
  10. Zhang XY, Bao J, Wang GH, He F, Xu XY. Qi SH. 2012. Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea gorgonians. Microb. Ecol. 64: 617-627. https://doi.org/10.1007/s00248-012-0050-x
  11. Zhang W, Xu L, Yang L, Huang Y, Li S. Shen Y. 2014c. Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia 96: 146-151. https://doi.org/10.1016/j.fitote.2014.05.001
  12. Viterbo A, Landau U, Kim S, Chernin L, Chet I. 2010. Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol. Lett. 305: 42-48. https://doi.org/10.1111/j.1574-6968.2010.01910.x
  13. Ghosh PK, De TK, Maiti TK. 2018. Role of acc deaminase as a stress ameliorating enzyme of plant growth-promoting rhizobacteria useful in stress agriculture: a review. pp. 57-106. Role of Rhizospheric Microbes in Soil. Springer, Singapore.
  14. Jia YJ, Ito H, Matsui H, Honma M. 2000. 1-aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces. Biosci. Biotechnol. Biochem. 64: 299-305. https://doi.org/10.1271/bbb.64.299
  15. Rai M, Rathod D, Agarkar G, Dar M, Brestic M, Pastore GM, et al. 2014. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis 62: 63-79. https://doi.org/10.1007/s13199-014-0273-3
  16. Przemieniecki SW, Damszel M, Kurowski TP, Mastalerz J, Kotlarz K. 2019. Identification, ecological evaluation and phylogenetic analysis of non-symbiotic endophytic fungi colonizing timothy grass and perennial ryegrass grown in adjacent plots. Grass Forage Sci. 74: 42-52. https://doi.org/10.1111/gfs.12404
  17. Sun J, Peng M, Chen GC, Wang SZ, Zhou GY. 2003. Study on community characteristics and community diversity in Stipa steppe of Qinghai Lake region. Acta Bot. Sin. 23: 1963-1968.
  18. Duan MJ, Gao QZ, Wan YF, Yue L, Guo YQ, Luobu D. 2010. Effect of grazing on community characteristics and species diversity of Stipa purpurea alpine grassland in northern Tibet. Acta Ecologica Sin. 30: 3892-3900.
  19. Liu WS, Zhao Y, You JL, Qi DH, Zhou Y, Chen JK, et al. 2016. Morphological and genetic variation along a north-to-south transect in Stipa purpurea, a dominant grass on the Qinghai-Tibetan Plateau: implications for response to climate change. PLoS One 11: e0161972. https://doi.org/10.1371/journal.pone.0161972
  20. Lu DX, Jin H, Yang XY, Zhang DH, Yan ZQ, Li XZ, et al. 2016. Characterization of rhizosphere and endophytic fungal communities from roots of Stipa purpurea in alpine steppe around Qinghai Lake. Can. J. Microbiol. 62: 643-656. https://doi.org/10.1139/cjm-2015-0857
  21. Ye X, Seth DB, Jamin D, Delia S, Williams M. 2015. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front. Plant Sci. 6: 490.
  22. Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD. 2011. Biodiversity of fungal endophyte communities inhabiting switch grass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Divers. 47: 19-27. https://doi.org/10.1007/s13225-010-0085-6
  23. Guo LD, Hyde KD, Liew ECY. 2000. Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol. 147: 617-630. https://doi.org/10.1046/j.1469-8137.2000.00716.x
  24. Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2: 113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  25. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  26. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning dna sequences. J. Comput. Biol. 7: 203-214. https://doi.org/10.1089/10665270050081478
  27. Li ZY. 2011. High-throughput screening and identification of bacteria containing ACC deaminase, M.S. Thesis of Zhejiang University. Hangzhou.
  28. Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M, Akagi Y, et al. 2013. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol. Rev. 37: 44-66. https://doi.org/10.1111/j.1574-6976.2012.00350.x
  29. Abuley IK, Nielsen BJ, Labouriau R. 2018. Resistance status of cultivated potatoes to early blight (Alternaria solani) in denmark. Plant Pathol. 67: 315-326. https://doi.org/10.1111/ppa.12744
  30. Dean R, Van Kan JAL, Pretorius ZA, Pietro AD, Spanu PD, Rudd JJ, et al. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13: 804-804. https://doi.org/10.1111/j.1364-3703.2012.00822.x
  31. Aoki T, O'Donnell Kerry, Geiser DM. 2014. Systematics of key phytopathogenic Fusarium species: current status and future challenges. J. Gen. Plant Pathol. 80: 189-201. https://doi.org/10.1007/s10327-014-0509-3
  32. Mohamad OA, Li L, Ma JB, Hatab S, Xu L, Guo J W, et al. 2018. Evaluation of the Antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front. Microbiol. 9: 924. https://doi.org/10.3389/fmicb.2018.00924
  33. Pan L, Li XZ, Jin H, Yang XY, Qin B. 2017. Antifungal activity of umbelliferone derivatives: synthesis and structure-activity relationships. Microb. Pathogenesis 104: 110-115. https://doi.org/10.1016/j.micpath.2017.01.024
  34. Jin H, Yang XY, Lu DX, Li CJ, Yan ZQ, Li XZ, et al. 2015. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach. Antonie Van Leeuwenhoek 108: 835-850. https://doi.org/10.1007/s10482-015-0538-8
  35. Wang Y, Lai Z, Li XX, Yan R, Zhang ZB, Yang H. 2016. Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China. World J. Microbiol. Biotechnol. 32: 20. https://doi.org/10.1007/s11274-015-1966-3
  36. Hyde KD, Soytong K. 2008. The fungal endophyte dilemma. Fungal Divers. 163: e173.
  37. Zhang FL, Ge HL, Zhang F, Guo N, Wang YC, Chen L, et al. 2016. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiol. Biochem. 100: 64-74. https://doi.org/10.1016/j.plaphy.2015.12.017
  38. da Silva CF, Vitorino LC, Soares MA, Souchie EL. 2018. Multifunctional potential of endophytic and rhizospheric microbial isolates associated with Butia purpurascens roots for promoting plant growth. Antonie Van Leeuwenhoek 111: 1-18. https://doi.org/10.1007/s10482-017-0999-z
  39. Zabalgogeazcoa I, Gundel PE, Helander M, Saikkonen K. 2013. Nonsystemic fungal endophytes in Festuca rubra plants infected by Epichloe festucae in subarctic habitats. Fungal Divers. 60: 25-32. https://doi.org/10.1007/s13225-013-0233-x
  40. Perez ML, Collavino MM, Sansberro PA, Mroginski LA, Galdeano E. 2016 Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions. World J. Microbiol. Biotechnol. 32: 61. https://doi.org/10.1007/s11274-016-2016-5
  41. Kepler RM, Maul JE, Rehner SA. 2017. Managing the plant microbiome for biocontrol fungi: examples from Hypocreales. Curr. Opin. Microbiol. 37: 48-53. https://doi.org/10.1016/j.mib.2017.03.006
  42. Angelini P, Rubini A, Gigante D, Reale L, Pagiotti R, Venanzoni R. 2012. The endophytic fungal communities associated with the leaves and roots of the common reed (Phragmites australis) in Lake Trasimeno (Perugia, Italy) in declining and healthy stands. Fungal Ecol. 5: 683-693. https://doi.org/10.1016/j.funeco.2012.03.001
  43. Sun WJ, Zhu HT, Zhang TY, Zhang MY, Wang D, Yang CR, et al. 2018. Two New Alkaloids from Fusarium tricinctum SYPF 7082, an Endophyte from the Root of Panax notoginseng. Nat. Prod. Bioprospect. 8: 391-396. https://doi.org/10.1007/s13659-018-0171-0
  44. Yang HJ, Ye WW, Ma JX, Zeng DD, Rong ZY, Xu M, et al. 2018. Endophytic fungal communities associated with field-grown soybean roots and seeds in the Huang-Huai region of China. PeerJ. 6: e4713. https://doi.org/10.7717/peerj.4713
  45. Bae SJ, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, et al. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol. Control 92: 128-138. https://doi.org/10.1016/j.biocontrol.2015.10.005
  46. Pereira EC, Vazquez-de-Aldana B, San Emeterio L, Zabalgogeazcoa I. 2019. A survey of culturable fungal endophytes from Festuca rubra subsp. pruinosa, a grass from marine cliffs, reveals a core microbiome. Front. Microbiol. 9: 3321. https://doi.org/10.3389/fmicb.2018.03321
  47. Zang W, Sun X, Sun JQ, Yu WX, Wang XS, Yin JX, et al. 2014. Diversity and community structure of endophytic fungi from Taxus chinensis var. mairei. Chinese J. Appl. Ecol. 25: 2071-2078.
  48. Xia Y, Amna A, Opiyo SO. 2018. The culturable endophytic fungal communities of switchgrass grown on a coal-mining site and their effects on plant growth. PLoS One 13: e0198994. https://doi.org/10.1371/journal.pone.0198994
  49. Leuchtmann A, Clemencon H. 2012. The taxonomic position of the genus Heydenia (Pyronemataceae, Pezizales) based on molecular and morphological data. Mycol. Prog. 11: 699-710. https://doi.org/10.1007/s11557-011-0779-5
  50. Goncalves VN, Vaz AB, Rosa CA, Rosa LH. 2012. Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol. Ecol. 82: 459-471. https://doi.org/10.1111/j.1574-6941.2012.01424.x
  51. Slemmons C, Johnson G, Connell LB. 2013. Application of an automated ribosomal intergenic spacer analysis database for identification of cultured Antarctic fungi. Antarct. Sci. 25: 44-50. https://doi.org/10.1017/S0954102012000879
  52. Su YY, Guo LD, Hyde KD. 2010. Response of endophytic fungi of Stipa grandis to experimental plant function group removal in Inner Mongolia steppe. China. Fungal Divers. 43: 93-101. https://doi.org/10.1007/s13225-010-0040-6
  53. O'Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 71: 5544-5550. https://doi.org/10.1128/AEM.71.9.5544-5550.2005
  54. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. 2007. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 26: 227-242. https://doi.org/10.1080/07352680701572966
  55. Penrose DM, Glick BR. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth promoting rhizobacteria. Physiol. Plant 118: 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
  56. Niones JT, Takemoto D. 2014. An isolate of Epichloe festucae, an endophytic fungus of temperate grasses, has growth inhibitory activity against selected grass pathogens. J. Gen. Plant Pathol. 80: 337-347. https://doi.org/10.1007/s10327-014-0521-7
  57. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. 2008. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 40: 1-10. https://doi.org/10.1016/j.soilbio.2007.07.002
  58. Gomes AA, Pinho DB, Cardeal ZDL, Menezes HC, DeQueiroz MV, Pereira OL. 2018. Simplicillium coffeanum, a new endophytic species from Brazilian coffee plants, emitting antimicrobial volatiles. Phytotaxa 333: 188-198. https://doi.org/10.11646/phytotaxa.333.2.2
  59. Nonaka K, Kaifuchib S, Ômuraa S, Masuma R. 2013. Five new Simplicillium species (Cordycipitaceae) from soils in Tokyo, Japan. Mycoscience 54: 42-53. https://doi.org/10.1016/j.myc.2012.07.002
  60. Li ZD, Chen XR, Li P. 2011. Screening and identification of endophytic bacteria from Stipa purpurea. Grassland and Turf. 31: 8-12. https://doi.org/10.3969/j.issn.1009-5500.2011.01.002
  61. Zhang HT, Yu PP, Abudula H, Xu TM, Mijit G. 2007. Characterstics and identification of an antagonistisc XJUL-6 against cotton verticillium wilt. Acta Microbiol. Sin. 47: 1084-1087. https://doi.org/10.3321/j.issn:0001-6209.2007.06.027

Cited by

  1. Stachybotrys musae sp. nov., S. microsporus, and Memnoniella levispora (Stachybotryaceae, Hypocreales) Found on Bananas in China and Thailand vol.11, pp.4, 2020, https://doi.org/10.3390/life11040323