DOI QR코드

DOI QR Code

Cloning and Functional Characterization of Putative Escherichia coli ABC Multidrug Efflux Transporter YddA

  • Feng, Zhenyue (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Liu, Defu (College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Liu, Ziwen (College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Liang, Yimin (College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Wang, Yanhong (College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Liu, Qingpeng (College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Liu, Zhenhua (College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Zang, Zhongjing (College of Life Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Cui, Yudong (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University)
  • Received : 2020.03.31
  • Accepted : 2020.04.23
  • Published : 2020.07.28

Abstract

A putative multidrug efflux gene, yddA, was cloned from the Escherichia coli K-12 strain. A drug-sensitive strain of E. coli missing the main multidrug efflux pump AcrB was constructed as a host and the yddA gene was knocked out in wild-type (WT) and drug-sensitive E. coliΔacrB to study the yddA function. Sensitivity to different substrates of WT E.coli, E. coliΔyddA, E. coliΔacrB and E. coliΔacrBΔyddA strains was compared with minimal inhibitory concentration (MIC) assays and fluorescence tests. MIC assay and fluorescence test results showed that YddA protein was a multidrug efflux pump that exported multiple substrates. Three inhibitors, ortho-vanadate, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and reserpine, were used in fluorescence tests. Ortho-vanadate and reserpine significantly inhibited the efflux and increased accumulation of ethidium bromide and norfloxacin, while CCCP had no significant effect on YddA-regulated efflux. The results indicated that YddA relies on energy released from ATP hydrolysis to transfer the substrates and YddA is an ABC-type multidrug exporter. Functional study of unknown ATP-binding cassette (ABC) superfamily transporters in the model organism E. coli is conducive to discovering new multidrug resistance-reversal targets and providing references for studying other ABC proteins of unknown function.

Keywords

References

  1. Chitsaz M, Brown MH. 2017. The role played by drug efflux pumps in bacterial multidrug resistance. Essays Biochem. 61: 127-139. https://doi.org/10.1042/EBC20160064
  2. Li XZ, Plesiat P, Nikaido H. 2015. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin. Microbiol. Rev. 28: 337-418. https://doi.org/10.1128/CMR.00117-14
  3. Orelle C, Mathieu K, Jault JM. 2019. Multidrug ABC transporters in bacteria. Res. Microbiol. 170: 381-391. https://doi.org/10.1016/j.resmic.2019.06.001
  4. Higgins CF. 2001. ABC transporters: physiology, structure and mechanism - an overview. Res. Microbiol. 152: 205-210. https://doi.org/10.1016/S0923-2508(01)01193-7
  5. Moussatova A, Kandt C, O'Mara ML, Tieleman DP. 2008. ATP-binding cassette transporters in Escherichia coli. Biochim. Biophys. Acta 1778: 1757-1771. https://doi.org/10.1016/j.bbamem.2008.06.009
  6. Hrycyna CAG, M.M. 1998. Multidrug ABC transporters from bacteria to man: an emerging hypothesis for the universality of molecular mechanism and function. Drug Resist. Updat. 1: 81-83. https://doi.org/10.1016/S1368-7646(98)80019-8
  7. Singh H, Velamakanni S, Deery MJ, Howard J, Wei SL, van Veen HW. 2016. ATP-dependent substrate transport by the ABC transporter MsbA is proton-coupled. Nat. Commun. 7: 12387. https://doi.org/10.1038/ncomms12387
  8. Reuter G, Janvilisri T, Venter H, Shahi S, Balakrishnan L, van Veen HW. 2003. The ATP binding cassette multidrug transporter LmrA and lipid transporter MsbA have overlapping substrate specificities. J. Biol. Chem. 278: 35193-35198. https://doi.org/10.1074/jbc.M306226200
  9. Hurlimann LM, Corradi V, Hohl M, Bloemberg GV, Tieleman DP, Seeger MA. 2016. The heterodimeric ABC transporter EfrCD mediates multidrug efflux in Enterococcus faecalis. Antimicrob. Agents Chemother. 60: 5400-5411. https://doi.org/10.1128/AAC.00661-16
  10. Torres C, Galian C, Freiberg C, Fantino JR, Jault JM. 2009. The YheI/YheH heterodimer from Bacillus subtilis is a multidrug ABC transporter. Biochim. Biophys. Acta 1788: 615-622. https://doi.org/10.1016/j.bbamem.2008.12.012
  11. Boncoeur E, Durmort C, Bernay B, Ebel C, Di Guilmi A, Croize J, et al. 2012. PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. Biochemistry 51: 7755-7765. https://doi.org/10.1021/bi300762p
  12. Blattner FR, Plunkett III G, Bloch CA, Perna NT, Burland V, et al. 1997. The complete genome sequence of Escherichia coli K-12. Sciene 277: 1453-1462. https://doi.org/10.1126/science.277.5331.1453
  13. Nsahlai CJ, Silver RP. 2003. Purification and characterization of KpsT, the ATP-binding component of the ABC-capsule exporter of Escherichia coli K1. FEMS Microbiol. Lett. 224: 113-118. https://doi.org/10.1016/S0378-1097(03)00428-2
  14. Lenders MH, Weidtkamp-Peters S, Kleinschrodt D, Jaeger KE, Smits SH, Schmitt L. 2015. Directionality of substrate translocation of the hemolysin A Type I secretion system. Sci. Rep. 5: 12470. https://doi.org/10.1038/srep12470
  15. Benz R, Maier E, Bauer S, Ludwig A. 2014. The deletion of several amino acid stretches of Escherichia coli alpha-hemolysin (HlyA) suggests that the channel-forming domain contains beta-strands. PLoS One 9: e112248. https://doi.org/10.1371/journal.pone.0112248
  16. Kobayashi N, Nishino K, Yamaguchi A. 2001. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J. Bacteriol. 183: 5639-5644. https://doi.org/10.1128/JB.183.19.5639-5644.2001
  17. Nakada S, Sakakura M, Takahashi H, Okuda S, Tokuda H, Shimada I. 2009. Structural investigation of the interaction between LolA and LolB using NMR. J. Biol. Chem. 284: 24634-24643. https://doi.org/10.1074/jbc.M109.001149
  18. Tao K, Watanabe S, Narita S, Tokuda H. 2010. A periplasmic LolA derivative with a lethal disulfide bond activates the Cpx stress response system. J. Bacteriol. 192: 5657-5662. https://doi.org/10.1128/JB.00821-10
  19. Tao K, Narita S, Tokuda H. 2012. Defective lipoprotein sorting induces lolA expression through the Rcs stress response phosphorelay system. J. Bacteriol. 194: 3643-3650. https://doi.org/10.1128/JB.00553-12
  20. Woebking B, Reuter G, Shilling RA, Velamakanni S, Shahi S, Venter H, et al. 2005. Drug-lipid A interactions on the Escherichia coli ABC transporter MsbA. J. Bacteriol. 187: 6363-6369. https://doi.org/10.1128/JB.187.18.6363-6369.2005
  21. Delgado MA, Vincent PA, Farias RN, Salomon RA. 2005. YojI of Escherichia coli functions as a microcin J25 efflux pump. J. Bacteriol. 187: 3465-3470. https://doi.org/10.1128/JB.187.10.3465-3470.2005
  22. Richard-Fogal CL, Frawley ER, Kranz RG. 2008. Topology and function of CcmD in cytochrome c maturation. J. Bacteriol. 190: 3489-3493. https://doi.org/10.1128/JB.00146-08
  23. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
  24. Morita Y, Kodama K, Shiota S, Mime T, Kataoka A, Mizushima T, et al. 1998. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob. Agents Chemother. 42: 1778-1782. https://doi.org/10.1128/AAC.42.7.1778
  25. Ohene-Agyei T, Lea JD, Venter H. 2012. Mutations in MexB that affect the efflux of antibiotics with cytoplasmic targets. FEMS Microbiol. Lett. 333: 20-27. https://doi.org/10.1111/j.1574-6968.2012.02594.x
  26. Traub wH. 1982. Agar (Disk) Diffusion test susceptibility of clinical isolates of Pseudomonas aeruginosa to azlocillin, cefotaxime, cefsulodin, lamoxactam, mezlocillin, and piperacillin. Chemotheraphy 28: 257-260. https://doi.org/10.1159/000238087
  27. Biswas S, Biswas I. 2011. Role of VltAB, an ABC transporter complex, in viologen tolerance in Streptococcus mutans. Antimicrob. Agents Chemother. 55: 1460-1469. https://doi.org/10.1128/AAC.01094-10
  28. Biswas I, Drake L, Erkina D, Biswas S. 2008. Involvement of sensor kinases in the stress tolerance response of Streptococcus mutans. J. Bacteriol. 190: 68-77. https://doi.org/10.1128/JB.00990-07
  29. Abdel-Motaal H, Meng L, Zhang Z, Abdelazez AH, Shao L, Xu T, et al. 2018. An uncharacterized major facilitator superfamily transporter from Planococcus maritimus exhibits dual functions as a $ Na^+(Li^+,\;K^+)/H^+$ antiporter and a multidrug efflux pump. Front. Microbiol. 9: 1601. https://doi.org/10.3389/fmicb.2018.01601
  30. Balakrishnan L, Venter H, Shilling RA, van Veen HW. 2004. Reversible transport by the ATP-binding cassette multidrug export pump LmrA: ATP synthesis at the expense of downhill ethidium uptake. J. Biol. Chem. 279: 11273-11280. https://doi.org/10.1074/jbc.M308494200
  31. de Cristobal RE, Vincent PA, Salomon RA. 2006. Multidrug resistance pump AcrAB-TolC is required for high-level, Tet(A)-mediated tetracycline resistance in Escherichia coli. J. Antimicrob. Chemother. 58: 31-36. https://doi.org/10.1093/jac/dkl172
  32. Li W, Sharma M, Kaur P. 2014. The DrrAB efflux system of Streptomyces peucetius is a multidrug transporter of broad substrate specificity. J. Biol. Chem. 289: 12633-12646. https://doi.org/10.1074/jbc.M113.536136
  33. Mortimer PGS, Piddock LJV. 1991. A comparison of methods used for measuring the accumulation of quinolones by Enterobacteriaceae, Pseudomonas aeruginosa and Staphylococcus aureus. J. Antimicrob. Chemother. 28: 639-653. https://doi.org/10.1093/jac/28.5.639
  34. Urbatsch IL, Sankaran B, Weber J, Senior AE. 1995. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J. Biol. Chem. 270: 19383-19390. https://doi.org/10.1074/jbc.270.33.19383
  35. Doerrler WT, Raetz CR. 2002. ATPase activity of the MsbA lipid flippase of Escherichia coli. J. Biol. Chem. 277: 36697-36705. https://doi.org/10.1074/jbc.M205857200
  36. Orelle C, Mathieu K, Jault JM. 2019. Multidrug ABC transporters in bacteria. Res. Microbiol. 170: 381-391. https://doi.org/10.1016/j.resmic.2019.06.001
  37. Kathawala RJ, Gupta P, Ashby CR, Jr., Chen ZS. 2015. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist. Updat. 18: 1-17. https://doi.org/10.1016/j.drup.2014.11.002
  38. Sakamoto K, Margolles A, van Veen HW, Konings WN. 2001. Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J. Bacteriol. 183: 5371-5375. https://doi.org/10.1128/JB.183.18.5371-5375.2001
  39. Pleban K, Macchiarulo A, Costantino G, Pellicciari R, Chiba P, Ecker GF. 2004. Homology model of the multidrug transporter LmrA from Lactococcus lactis. Bioorg. Med. Chem. Lett. 14: 5823-5826. https://doi.org/10.1016/j.bmcl.2004.09.040
  40. Lubelski J, de Jong A, van Merkerk R, Agustiandari H, Kuipers OP, Kok J, et al. 2006. LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol. Microbiol. 61: 771-781. https://doi.org/10.1111/j.1365-2958.2006.05267.x
  41. Collauto A, Mishra S, Litvinov A, Mchaourab HS, Goldfarb D. 2017. Direct spectroscopic detection of ATP turnover reveals mechanistic divergence of ABC exporters. Structure 25: 1264-1274. https://doi.org/10.1016/j.str.2017.06.014
  42. Mishra S, Verhalen B, Stein RA, Wen P-C, Tajkhorshid E, McHaourab HS. 2014. Conformational dynamics of the nucleotide binding domains and the power stroke of a heterodimeric ABC transporter. ELife 3: e02740. https://doi.org/10.7554/eLife.02740
  43. Reilman E, Mars RA, van Dijl JM, Denham EL. 2014. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism. Nucleic Acids Res. 42: 11393-11407. https://doi.org/10.1093/nar/gku832
  44. Alvarado M, Martin-Galiano AJ, Ferrandiz MJ, Zaballos A, de la Campa AG. 2017. Upregulation of the PatAB transporter confers fluoroquinolone resistance to Streptococcus pseudopneumoniae. Front. Microbiol. 8: 2074. https://doi.org/10.3389/fmicb.2017.02074
  45. Shiadeh SMJ, Hashemi A, Fallah F, Lak P, Azimi L, Rashidan M. 2019. First detection of efrAB, an ABC multidrug efflux pump in Enterococcus faecalis in Tehran, Iran. Acta Microbiol. Immunol. Hung. 66: 57-68. https://doi.org/10.1556/030.65.2018.016
  46. Lee EW, Huda MN, Kuroda T, Mizushima T, Tsuchiya T. 2003. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob. Agents Chemother. 47: 3733-3738. https://doi.org/10.1128/AAC.47.12.3733-3738.2003
  47. Steinfels E, Orelle Cd, Fantino JR, Dalmas O, Rigaud JL, Denizotois F, et al. 2004. Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry 43: 7491-7502. https://doi.org/10.1021/bi0362018
  48. Krugel H, Licht A, Biedermann G, Petzold A, Lassak J, Hupfer Y, et al. 2010. Cervimycin C resistance in Bacillus subtilis is due to a promoter up-mutation and increased mRNA stability of the constitutive ABC-transporter gene bmrA. FEMS Microbiol. Lett. 313: 155-163. https://doi.org/10.1111/j.1574-6968.2010.02143.x
  49. Dalmas O, Do Cao MA, Lugo MR, Sharom FJ, Pietro AD, Jault JM. 2005. Time-resolved fluorescence resonance energy transfer shows that the bacterial multidrug ABC half-transporter BmrA functions as a Homodimer. Biochemistry 44: 4312-4321. https://doi.org/10.1021/bi0482809
  50. Ross JI, Eady EA, Cove JH, Baumberg S. 1996. Minimal functional system required for expression of erythromycin resistance by msrA in Staphylococcus aureus RN4220. Gene 183: 143-148. https://doi.org/10.1016/S0378-1119(96)00541-0
  51. Lin HT, Bavro VN, Barrera NP, Frankish HM, Velamakanni S, van Veen HW, et al. 2009. MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA. J. Biol. Chem. 284: 1145-1154. https://doi.org/10.1074/jbc.M806964200
  52. Zutz A, Hoffmann J, Hellmich UA, Glaubitz C, Ludwig B, Brutschy B, et al. 2011. Asymmetric ATP hydrolysis cycle of the heterodimeric multidrug ABC transport complex TmrAB from Thermus thermophilus. J. Biol. Chem. 286: 7104-7115. https://doi.org/10.1074/jbc.M110.201178
  53. Huda N, Lee EW, Chen J, Morita Y, Kuroda T, Mizushima T, et al. 2003. Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in non-O1 Vibrio cholerae. Antimicrob. Agents Chemother. 47: 2413-2417. https://doi.org/10.1128/AAC.47.8.2413-2417.2003
  54. Al-Hamad A, Upton M, Burnie J. 2009. Molecular cloning and characterization of SmrA, a novel ABC multidrug efflux pump from Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 64: 731-734. https://doi.org/10.1093/jac/dkp271
  55. Matsuo T, Chen J, Minato Y, Ogawa W, Mizushima T, Kuroda T, et al. 2008. SmdAB, a heterodimeric ABC-Type multidrug efflux pump, in Serratia marcescens. J. Bacteriol. 190: 648-654. https://doi.org/10.1128/JB.01513-07
  56. Higgins CF. 2001. ABC transporters: physiology, structure and mechanism - an overview. Res. Microbiol. 152: 205-210. https://doi.org/10.1016/S0923-2508(01)01193-7
  57. Nishino K, Yamaguchi A. 2001. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183: 5803-5812. https://doi.org/10.1128/JB.183.20.5803-5812.2001
  58. Wla D, Cook DN, Alberti W, Pon NG, Nikaido H, California JE. 1995. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol. Microbiol. 16: 45-55. https://doi.org/10.1111/j.1365-2958.1995.tb02390.x
  59. Oliveira AS, Baptista AM, Soares CM. 2011. Conformational changes induced by ATP-hydrolysis in an ABC transporter: A molecular dynamics study of the Sav1866 exporter. Proteins 79: 1977-1990. https://doi.org/10.1002/prot.23023

Cited by

  1. Core Oligosaccharide Portion of Lipopolysaccharide Plays Important Roles in Multiple Antibiotic Resistance in Escherichia coli vol.65, pp.10, 2020, https://doi.org/10.1128/aac.00341-21