DOI QR코드

DOI QR Code

Ultradian Rhythms in the Hypothalamic Arcuate Nucleus Kisspeptin Neurons and Developmental Processes

  • Kim, Doyeon (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Choe, Han Kyoung (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Kim, Kyungjin (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2020.03.12
  • Accepted : 2020.05.11
  • Published : 2020.07.31

Abstract

Numerous physiological processes in nature have multiple oscillations within 24 h, that is, ultradian rhythms. Compared to the circadian rhythm, which has a period of approximately one day, these short oscillations range from seconds to hours, and the mechanisms underlying ultradian rhythms remain largely unknown. This review aims to explore and emphasize the implications of ultradian rhythms and their underlying regulations. Reproduction and developmental processes show ultradian rhythms, and these physiological systems can be regulated by short biological rhythms. Specifically, we recently uncovered synchronized calcium oscillations in the organotypic culture of hypothalamic arcuate nucleus (ARN) kisspeptin neurons that regulate reproduction. Synchronized calcium oscillations were dependent on voltage-gated ion channel-mediated action potentials and were repressed by chemogenetic inhibition, suggesting that the network within the ARN and between the kisspeptin population mediates the oscillation. This minireview describes that ultradian rhythms are a general theme that underlies biological features, with special reference to calcium oscillations in the hypothalamic ARN from a developmental perspective. We expect that more attention to these oscillations might provide insight into physiological or developmental mechanisms, since many oscillatory features in nature still remain to be explored.

Keywords

References

  1. Belchetz, P., Plant, T., Nakai, Y., Keogh, E., and Knobil, E. (1978). Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202, 631-633. https://doi.org/10.1126/science.100883
  2. Blum, I.D., Zhu, L., Moquin, L., Kokoeva, M.V., Gratton, A., Giros, B., and Storch, K.F. (2014). A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal. eLife 3, e05105. https://doi.org/10.7554/elife.05105
  3. Bourguignon, C. and Storch, K.F. (2017). Control of rest:activity by a dopaminergic ultradian oscillator and the circadian clock. Front. Neurol. 8, 614. https://doi.org/10.3389/fneur.2017.00614
  4. Campbell, J.N., Macosko, E.Z., Fenselau, H., Pers, T.H., Lyubetskaya, A., Tenen, D., Goldman, M., Verstegen, A.M., Resch, J.M., McCarroll, S.A., et al. (2017). A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484-496. https://doi.org/10.1038/nn.4495
  5. Choe, H.K., Kim, H.D., Park, S.H., Lee, H.W., Park, J.Y., Seong, J.Y., Lightman, S.L., Son, G.H., and Kim, K. (2013). Synchronous activation of gonadotropin-releasing hormone gene transcription and secretion by pulsatile kisspeptin stimulation. Proc. Natl. Acad. Sci. U. S. A. 110, 5677-5682. https://doi.org/10.1073/pnas.1213594110
  6. Clarkson, J., Han, S.Y., Piet, R., McLennan, T., Kane, G.M., Ng, J., Porteous, R.W., Kim, J.S., Colledge, W.H., Iremonger, K.J., et al. (2017). Definition of the hypothalamic GnRH pulse generator in mice. Proc. Natl. Acad. Sci. U. S. A. 114, E10216-E10223. https://doi.org/10.1073/pnas.1713897114
  7. Clarkson, J. and Herbison, A.E. (2006). Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147, 5817-5825. https://doi.org/10.1210/en.2006-0787
  8. Cortassa, S.D.C., Aon, M.A., Aon, J.C., Iglesias, A.A., and Lloyd, D. (2011). An Introduction to Metabolic and Cellular Engineering (2nd Edition) (Singapore: World Scientific Publishing Company).
  9. Dibner, C., Schibler, U., and Albrecht, U. (2010). The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549. https://doi.org/10.1146/annurev-physiol-021909-135821
  10. Edgar, R.S., Green, E.W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., Xu, Y., Pan, M., Valekunja, U.K., Feeney, K.A., et al. (2012). Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459-464. https://doi.org/10.1038/nature11088
  11. Fu, L.Y. and van den Pol, A.N. (2010). Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism. J. Neurosci. 30, 10205-10219. https://doi.org/10.1523/JNEUROSCI.2098-10.2010
  12. Gachon, F., Nagoshi, E., Brown, S.A., Ripperger, J., and Schibler, U. (2004). The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113, 103-112. https://doi.org/10.1007/s00412-004-0296-2
  13. Gill, J.C., Navarro, V.M., Kwong, C., Noel, S.D., Martin, C., Xu, S., Clifton, D.K., Carroll, R.S., Steiner, R.A., and Kaiser, U.B. (2012). Increased neurokinin B (Tac2) expression in the mouse arcuate nucleus is an early marker of pubertal onset with differential sensitivity to sex steroid-negative feedback than Kiss1. Endocrinology 153, 4883-4893. https://doi.org/10.1210/en.2012-1529
  14. Goldbeter, A. (2008). Biological rhythms: clocks for all times. Curr. Biol. 18, R751-R753. https://doi.org/10.1016/j.cub.2008.06.044
  15. Hastings, M.H., Maywood, E.S., and Brancaccio, M. (2018). Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453-469. https://doi.org/10.1038/s41583-018-0026-z
  16. Herbison, A.E. (2016). Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 12, 452-466. https://doi.org/10.1038/nrendo.2016.70
  17. Herbison, A.E. (2018). The gonadotropin-releasing hormone pulse generator. Endocrinology 159, 3723-3736. https://doi.org/10.1210/en.2018-00653
  18. Hirata, H., Bessho, Y., Kokubu, H., Masamizu, Y., Yamada, S., Lewis, J., and Kageyama, R. (2004). Instability of Hes7 protein is crucial for the somite segmentation clock. Nat. Genet. 36, 750-754. https://doi.org/10.1038/ng1372
  19. Hubaud, A. and Pourquie, O. (2014). Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15, 709-721. https://doi.org/10.1038/nrm3891
  20. Imayoshi, I., Isomura, A., Harima, Y., Kawaguchi, K., Kori, H., Miyachi, H., Fujiwara, T., Ishidate, F., and Kageyama, R. (2013). Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342, 1203-1208. https://doi.org/10.1126/science.1242366
  21. Isomura, A. and Kageyama, R. (2014). Ultradian oscillations and pulses: coordinating cellular responses and cell fate decisions. Development 141, 3627-3636. https://doi.org/10.1242/dev.104497
  22. Israel, J.M., Le Masson, G., Theodosis, D.T., and Poulain, D.A. (2003). Glutamatergic input governs periodicity and synchronization of bursting activity in oxytocin neurons in hypothalamic organotypic cultures. Eur. J. Neurosci. 17, 2619-2629. https://doi.org/10.1046/j.1460-9568.2003.02705.x
  23. Kageyama, R., Niwa, Y., and Shimojo, H. (2009). Rhythmic gene expression in somite formation and neural development. Mol. Cells 27, 497-502. https://doi.org/10.1007/s10059-009-0068-1
  24. Kalafatakis, K., Russell, G.M., Harmer, C.J., Munafo, M.R., Marchant, N., Wilson, A., Brooks, J.C., Durant, C., Thakrar, J., Murphy, P., et al. (2018). Ultradian rhythmicity of plasma cortisol is necessary for normal emotional and cognitive responses in man. Proc. Natl. Acad. Sci. U. S. A. 115, E4091-E4100. https://doi.org/10.1073/pnas.1714239115
  25. Kim, D., Jang, S., Kim, J., Park, I., Ku, K., Choi, M., Lee, S., Heo, W.D., Son, G.H., Choe, H.K., et al. (2020). Kisspeptin neuron-specific and self-sustained calcium oscillation in the hypothalamic arcuate nucleus of neonatal mice: regulatory factors of its synchronization. Neuroendocrinology 2020 Jan 15 [Epub]. https://doi.org/10.1159/000505922
  26. Kumar, D., Periasamy, V., Freese, M., Voigt, A., and Boehm, U. (2015). In utero development of kisspeptin/GnRH neural circuitry in male mice. Endocrinology 156, 3084-3090. https://doi.org/10.1210/EN.2015-1412
  27. Lamont, E.W. and Amir, S. (2010). Circadian and ultradian clocks/rhythms. In Encyclopedia of Behavioral Neuroscience, G.F. Koob, M.L. Moal, and R.F. Thompson, eds. (Oxford: Academic Press), pp. 257-261.
  28. Lee, J., Chun, S.K., Son, G.H., and Kim, K. (2015). Sumoylation of Hes6 regulates protein degradation and Hes1-mediated transcription. Endocrinol. Metab. (Seoul) 30, 381-388. https://doi.org/10.3803/EnM.2015.30.3.381
  29. Lightman, S.L. and Conway-Campbell, B.L. (2010). The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat. Rev. Neurosci. 11, 710-718. https://doi.org/10.1038/nrn2914
  30. Lloyd, D., Aon, M.A., and Cortassa, S. (2001). Why homeodynamics, not homeostasis? ScientificWorldJournal 1, 133-145. https://doi.org/10.1100/tsw.2001.20
  31. Lopp, S., Navidi, W., Achermann, P., LeBourgeois, M., and Diniz Behn, C. (2017). Developmental changes in ultradian sleep cycles across early childhood. J. Biol. Rhythms 32, 64-74. https://doi.org/10.1177/0748730416685451
  32. McCartney, C.R. and Marshall, J.C. (2014). Neuroendocrinology of reproduction. In Yen & Jaffe's Reproductive Endocrinology, 7th ed., J.F. Strauss and R.L. Barbieri, eds. (Philadelphia, Elsevier Saunders), pp. 3-26.
  33. McGinnis, G.R. and Young, M.E. (2016). Circadian regulation of metabolic homeostasis: causes and consequences. Nat. Sci. Sleep 8, 163-180.
  34. Muller, T.D., Nogueiras, R., Andermann, M.L., Andrews, Z.B., Anker, S.D., Argente, J., Batterham, R.L., Benoit, S.C., Bowers, C.Y., Broglio, F., et al. (2015). Ghrelin. Mol. Metab. 4, 437-460. https://doi.org/10.1016/j.molmet.2015.03.005
  35. Navarro, V.M., Ruiz-Pino, F., Sanchez-Garrido, M.A., Garcia-Galiano, D., Hobbs, S.J., Manfredi-Lozano, M., Leon, S., Sangiao-Alvarellos, S., Castellano, J.M., Clifton, D.K., et al. (2012). Role of neurokinin B in the control of female puberty and its modulation by metabolic status. J. Neurosci. 32, 2388-2397. https://doi.org/10.1523/JNEUROSCI.4288-11.2012
  36. Pinilla, L., Aguilar, E., Dieguez, C., Millar, R.P., and Tena-Sempere, M. (2012). Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol. Rev. 92, 1235-1316. https://doi.org/10.1152/physrev.00037.2010
  37. Ribeiro, A.B., Leite, C.M., Kalil, B., Franci, C.R., Anselmo-Franci, J.A., and Szawka, R.E. (2015). Kisspeptin regulates tuberoinfundibular dopaminergic neurones and prolactin secretion in an oestradiol-dependent manner in male and female rats. J. Neuroendocrinol. 27, 88-99. https://doi.org/10.1111/jne.12242
  38. Seminara, S.B., Messager, S., Chatzidaki, E.E., Thresher, R.R., Acierno, J.S., Jr, Shagoury, J.K., Bo-Abbas, Y., Kuohung, W., Schwinof, K.M., Hendrick, A.G., et al. (2003). The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614-1627. https://doi.org/10.1056/NEJMoa035322
  39. Smedler, E. and Uhlen, P. (2014). Frequency decoding of calcium oscillations. Biochim. Biophys. Acta 1840, 964-969. https://doi.org/10.1016/j.bbagen.2013.11.015
  40. Son, G.H., Chung, S., Choe, H.K., Kim, H.D., Baik, S.M., Lee, H., Lee, H.W., Choi, S., Sun, W., Kim, H., et al. (2008). Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc. Natl. Acad. Sci. U. S. A. 105, 20970-20975. https://doi.org/10.1073/pnas.0806962106
  41. Sonnen, K.F., Lauschke, V.M., Uraji, J., Falk, H.J., Petersen, Y., Funk, M.C., Beaupeux, M., François, P., Merten, C.A., and Aulehla, A. (2018). Modulation of phase shift between Wnt and Notch signaling oscillations controls mesoderm segmentation. Cell 172, 1079-1090.e12. https://doi.org/10.1016/j.cell.2018.01.026
  42. Szawka, R.E., Ribeiro, A.B., Leite, C.M., Helena, C.V., Franci, C.R., Anderson, G.M., Hoffman, G.E., and Anselmo-Franci, J.A. (2010). Kisspeptin regulates prolactin release through hypothalamic dopaminergic neurons. Endocrinology 151, 3247-3257. https://doi.org/10.1210/en.2009-1414
  43. Takahashi, J.S. (2017). Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164-179. https://doi.org/10.1038/nrg.2016.150
  44. Takashima, Y., Ohtsuka, T., Gonzalez, A., Miyachi, H., and Kageyama, R. (2011). Intronic delay is essential for oscillatory expression in the segmentation clock. Proc. Natl. Acad. Sci. U. S. A. 108, 3300-3305. https://doi.org/10.1073/pnas.1014418108
  45. van der Veen, D.R. and Gerkema, M.P. (2017). Unmasking ultradian rhythms in gene expression. FASEB J. 31, 743-750. https://doi.org/10.1096/fj.201600872R
  46. Voliotis, M., Li, X.F., De Burgh, R., Lass, G., Lightman, S.L., O'Byrne, K.T., and Tsaneva-Atanasova, K. (2019). The origin of GnRH pulse generation: an integrative mathematical-experimental approach. J. Neurosci. 39, 9738-9747. https://doi.org/10.1523/jneurosci.0828-19.2019
  47. Wolpert, L., Tickle, C., and Arias, A.M. (2015). Principles of Development (Oxford: Oxford University Press).
  48. Wu, Y.E., Enoki, R., Oda, Y., Huang, Z.L., Honma, K.I., and Honma, S. (2018). Ultradian calcium rhythms in the paraventricular nucleus and subparaventricular zone in the hypothalamus. Proc. Natl. Acad. Sci. U. S. A. 115, E9469-E9478. https://doi.org/10.1073/pnas.1804300115
  49. Yates, F.E. and Yates L.B. (2008). Ultradian rhythms as the dynamic signature of life. In Ultradian Rhythms from Molecules to Mind, D. Lloyd and E. Rossi, eds. (Dordrecht, Netherlands: Springer Science+Business Media B.V.), pp. 249-260.
  50. Yildiz, B., Suchard, M., Wong, M., McCann, S., and Licinio, J. (2004). Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc. Natl. Acad. Sci. U. S. A. 101, 10434-10439. https://doi.org/10.1073/pnas.0403465101

Cited by

  1. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology vol.64, 2020, https://doi.org/10.1016/j.yfrne.2021.100963