References
- Achim, K., Pettit, J.B., Saraiva, L.R., Gavriouchkina, D., Larsson, T., Arendt, D., and Marioni, J.C. (2015). High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33, 503-509. https://doi.org/10.1038/nbt.3209
- Asp, M., Giacomello, S., Larsson, L., Wu, C., Furth, D., Qian, X., Wardell, E., Custodio, J., Reimegard, J., Salmen, F., et al. (2019). A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647-1660.e19. https://doi.org/10.1016/j.cell.2019.11.025
- Avital, G., Avraham, R., Fan, A., Hashimshony, T., Hung, D.T., and Yanai, I. (2017). scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing. Genome Biol. 18, 200. https://doi.org/10.1186/s13059-017-1340-x
- Boisset, J.C., Vivie, J., Grun, D., Muraro, M.J., Lyubimova, A., and van Oudenaarden, A. (2018). Mapping the physical network of cellular interactions. Nat. Methods 15, 547-553. https://doi.org/10.1038/s41592-018-0009-z
- Browaeys, R., Saelens, W., and Saeys, Y. (2020). NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159-162. https://doi.org/10.1038/s41592-019-0667-5
- Burgess, D.J. (2019). Spatial transcriptomics coming of age. Nat. Rev. Genet. 20, 317. https://doi.org/10.1038/s41576-019-0129-z
- Carow, B., Hauling, T., Qian, X., Kramnik, I., Nilsson, M., and Rottenberg, M.E. (2019). Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nat. Commun. 10, 1823. https://doi.org/10.1038/s41467-019-09816-4
- Chen, J., Suo, S., Tam, P.P., Han, J.J., Peng, G., and Jing, N. (2017). Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat. Protoc. 12, 566-580. https://doi.org/10.1038/nprot.2017.003
-
Chen, W.T., Lu, A., Craessaerts, K., Pavie, B., Sala Frigerio, C., Mancuso, R., Qian, X., Lalakova, J., Kuhnemund, M., Voytyuk, I., et al. (2019). Spatial and temporal transcriptomics reveal microglia-astroglia crosstalk in the amyloid-
${\beta}$ plaque cell niche of Alzheimer's disease. BioRxiv, https://doi. org/10.1101/719930 - Chen, X., Teichmann, S.A., and Meyer, K.B. (2018). From tissues to cell types and back: single-cell gene expression analysis of tissue architecture. Annu. Rev. Biomed. Data Sci. 1, 29-51. https://doi.org/10.1146/annurev-biodatasci-080917-013452
- Chung, S.H. and Shen, W. (2015). Laser capture microdissection: from its principle to applications in research on neurodegeneration. Neural Regen. Res. 10, 897-898. https://doi.org/10.4103/1673-5374.158346
- Codeluppi, S., Borm, L.E., Zeisel, A., La Manno, G., van Lunteren, J.A., Svensson, C.I., and Linnarsson, S. (2018). Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932-935. https://doi.org/10.1038/s41592-018-0175-z
- Combs, P.A. and Eisen, M.B. (2013). Sequencing mRNA from cryo-sliced Drosophila embryos to determine genome-wide spatial patterns of gene expression. PLoS One 8, e71820. https://doi.org/10.1371/journal.pone.0071820
- Datta, S., Malhotra, L., Dickerson, R., Chaffee, S., Sen, C.K., and Roy, S. (2015). Laser capture microdissection: big data from small samples. Histol. Histopathol. 30, 1255-1269.
- Eng, C.L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., Yun, J., Cronin, C., Karp, C., Yuan, G.C., et al. (2019). Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235-239. https://doi.org/10.1038/s41586-019-1049-y
- Giladi, A., Cohen, M., Medaglia, C., Baran, Y., Li, B., Zada, M., Bost, P., Blecher-Gonen, R., Salame, T.M., Mayer, J.U., et al. (2020). Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629-637. https://doi.org/10.1038/s41587-020-0442-2
- Grun, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., Sasaki, N., Clevers, H., and van Oudenaarden, A. (2015). Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251-255. https://doi.org/10.1038/nature14966
- Halpern, K.B., Shenhav, R., Massalha, H., Toth, B., Egozi, A., Massasa, E.E., Medgalia, C., David, E., Giladi, A., Moor, A.E., et al. (2018). Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36, 962-970. https://doi.org/10.1038/nbt.4231
- Halpern, K.B., Shenhav, R., Matcovitch-Natan, O., Toth, B., Lemze, D., Golan, M., Massasa, E.E., Baydatch, S., Landen, S., Moor, A.E., et al. (2017). Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352-356. https://doi.org/10.1038/nature21065
- Hernandez, I., Qian, X.Y., Lalakova, J., Verheyen, T., Hilscher, M., and Kuhnemund, M. (2019). Mapping brain cell types with CARTANA in situ sequencing on the Nikon Ti2-E microscope. Nat. Methods 16.
- Jakt, L.M., Moriwaki, S., and Nishikawa, S. (2013). A continuum of transcriptional identities visualized by combinatorial fluorescent in situ hybridization. Development 140, 216-225. https://doi.org/10.1242/dev.086975
- Junker, J.P., Noel, E.S., Guryev, V., Peterson, K.A., Shah, G., Huisken, J., McMahon, A.P., Berezikov, E., Bakkers, J., and van Oudenaarden, A. (2014). Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 662-675. https://doi.org/10.1016/j.cell.2014.09.038
- Karaiskos, N., Wahle, P., Alles, J., Boltengagen, A., Ayoub, S., Kipar, C., Kocks, C., Rajewsky, N., and Zinzen, R.P. (2017). The Drosophila embryo at singlecell transcriptome resolution. Science 358, 194-199. https://doi.org/10.1126/science.aan3235
- Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J., Botling, J., Wahlby, C., and Nilsson, M. (2013). In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857-860. https://doi.org/10.1038/nmeth.2563
- Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C., and Teichmann, S.A. (2015). The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610-620. https://doi.org/10.1016/j.molcel.2015.04.005
- Kumar, M.P., Du, J., Lagoudas, G., Jiao, Y., Sawyer, A., Drummond, D.C., Lauffenburger, D.A., and Raue, A. (2018). Analysis of single-cell RNA-seq identifies cell-cell communication associated with tumor characteristics. Cell Rep. 25, 1458-1468.e4. https://doi.org/10.1016/j.celrep.2018.10.047
- Lee, J.H., Daugharthy, E.R., Scheiman, J., Kalhor, R., Ferrante, T.C., Terry, R., Turczyk, B.M., Yang, J.L., Lee, H.S., Aach, J., et al. (2015). Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442-458. https://doi.org/10.1038/nprot.2014.191
- Lee, J.H., Daugharthy, E.R., Scheiman, J., Kalhor, R., Yang, J.L., Ferrante, T.C., Terry, R., Jeanty, S.S., Li, C., Amamoto, R., et al. (2014). Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360-1363. https://doi.org/10.1126/science.1250212
- Levsky, J.M. and Singer, R.H. (2003). Fluorescence in situ hybridization: past, present and future. J. Cell Sci. 116, 2833-2838. https://doi.org/10.1242/jcs.00633
- Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M., and Cai, L. (2014). Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360-361. https://doi.org/10.1038/nmeth.2892
- Mathot, L., Kundu, S., Ljungstrom, V., Svedlund, J., Moens, L., Adlerteg, T., Falk-Sorqvist, E., Rendo, V., Bellomo, C., Mayrhofer, M., et al. (2017). Somatic ephrin receptor mutations are associated with metastasis in primary colorectal cancer. Cancer Res. 77, 1730-1740. https://doi.org/10.1158/0008-5472.CAN-16-1921
- McFaline-Figueroa, J.L., Hill, A.J., Qiu, X., Jackson, D., Shendure, J., and Trapnell, C. (2019). A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition. Nat. Genet. 51, 1389-1398. https://doi.org/10.1038/s41588-019-0489-5
- Moffitt, J.R. and Zhuang, X. (2016). RNA imaging with multiplexed errorrobust fluorescence in situ hybridization (MERFISH). Methods Enzymol. 572, 1-49. https://doi.org/10.1016/bs.mie.2016.03.020
- Moncada, R., Chiodin, M., Devlin, J.C., Baron, M., Hajdu, C.H., Simeone, D., and Yanai, I. (2018). Integrating single-cell RNA-Seq with spatial transcriptomics in pancreatic ductal adenocarcinoma using multimodal intersection analysis. BioRxiv, https://doi.org/10.1101/254375
- Moor, A.E., Harnik, Y., Ben-Moshe, S., Massasa, E.E., Rozenberg, M., Eilam, R., Bahar Halpern, K., and Itzkovitz, S. (2018). Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156-1167.e15. https://doi.org/10.1016/j.cell.2018.08.063
- Nichterwitz, S., Chen, G., Aguila Benitez, J., Yilmaz, M., Storvall, H., Cao, M., Sandberg, R., Deng, Q., and Hedlund, E. (2016). Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nat. Commun. 7, 12139. https://doi.org/10.1038/ncomms12139
- Nitzan, M., Karaiskos, N., Friedman, N., and Rajewsky, N. (2019). Gene expression cartography. Nature 576, 132-137. https://doi.org/10.1038/s41586-019-1773-3
- Noel, F., Massenet-Regad, L., Carmi-Levy, I., Cappuccio, A., Grandclaudon, M., Trichot, C., Kieffer, Y., Mechta-Grigoriou, F., and Soumelis, V. (2020). ICELLNET: a transcriptome-based framework to dissect intercellular communication. BioRxiv, https://doi.org/10.1101/2020.03.05.976878
- Okamura-Oho, Y., Shimokawa, K., Takemoto, S., Hirakiyama, A., Nakamura, S., Tsujimura, Y., Nishimura, M., Kasukawa, T., Masumoto, K.H., Nikaido, I., et al. (2012). Transcriptome tomography for brain analysis in the webaccessible anatomical space. PLoS One 7, e45373. https://doi.org/10.1371/journal.pone.0045373
- Oktay, M.H., Lee, Y.F., Harney, A., Farrell, D., Kuhn, N.Z., Morris, S.A., Greenspan, E., Mohla, S., Grodzinski, P., and Norton, L. (2015). Cell-to-cell communication in cancer: workshop report. NPJ Breast Cancer 1, 15022. https://doi.org/10.1038/npjbcancer.2015.22
- Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., Cahill, D.P., Nahed, B.V., Curry, W.T., Martuza, R.L., et al. (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401. https://doi.org/10.1126/science.1254257
- Pollen, A.A., Nowakowski, T.J., Shuga, J., Wang, X., Leyrat, A.A., Lui, J.H., Li, N., Szpankowski, L., Fowler, B., Chen, P., et al. (2014). Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053-1058. https://doi.org/10.1038/nbt.2967
- Proserpio, V., Piccolo, A., Haim-Vilmovsky, L., Kar, G., Lonnberg, T., Svensson, V., Pramanik, J., Natarajan, K.N., Zhai, W., Zhang, X., et al. (2016). Single-cell analysis of CD4+ T-cell differentiation reveals three major cell states and progressive acceleration of proliferation. Genome Biol. 17, 103. https://doi.org/10.1186/s13059-016-0957-5
- Raj, A., Rifkin, S.A., Andersen, E., and van Oudenaarden, A. (2010). Variability in gene expression underlies incomplete penetrance. Nature 463, 913-918. https://doi.org/10.1038/nature08781
- Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A., and Tyagi, S. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877-879. https://doi.org/10.1038/nmeth.1253
- Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E., Vanderburg, C.R., Welch, J., Chen, L.M., Chen, F., and Macosko, E.Z. (2019). Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463-1467. https://doi.org/10.1126/science.aaw1219
- Rouhanifard, S.H., Mellis, I.A., Dunagin, M., Bayatpour, S., Jiang, C.L., Dardani, I., Symmons, O., Emert, B., Torre, E., Cote, A., et al. (2018). ClampFISH detects individual nucleic acid molecules using click chemistrybased amplification. Nat. Biotechnol. 2018 Nov 12 [Epub]. https://doi.org/10.1038/nbt.4286
- Roy, S. and Kornberg, T.B. (2015). Paracrine signaling mediated at cell-cell contacts. Bioessays 37, 25-33. https://doi.org/10.1002/bies.201400122
- Salmen, F., Vickovic, S., Larsson, L., Stenbeck, L., Vallon-Christersson, J., Ehinger, A., Hakkinen, J., Borg, Å., Frisen, J., Stahl, P.L., et al. (2018). Multidimensional transcriptomics provides detailed information about immune cell distribution and identity in HER2+ breast tumors. BioRxiv, https://doi.org/10.1101/358937
- Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495-502. https://doi.org/10.1038/nbt.3192
- Shah, S., Lubeck, E., Zhou, W., and Cai, L. (2016). In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342-357. https://doi.org/10.1016/j.neuron.2016.10.001
- Shalek, A.K., Satija, R., Shuga, J., Trombetta, J.J., Gennert, D., Lu, D., Chen, P., Gertner, R.S., Gaublomme, J.T., Yosef, N., et al. (2014). Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363-369. https://doi.org/10.1038/nature13437
- Silberstein, L., Goncalves, K.A., Kharchenko, P.V., Turcotte, R., Kfoury, Y., Mercier, F., Baryawno, N., Severe, N., Bachand, J., Spencer, J.A., et al. (2016). Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell 19, 530-543. https://doi.org/10.1016/j.stem.2016.07.004
- Skelly, D.A., Squiers, G.T., McLellan, M.A., Bolisetty, M.T., Robson, P., Rosenthal, N.A., and Pinto, A.R. (2018). Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep. 22, 600-610. https://doi.org/10.1016/j.celrep.2017.12.072
- Soldatov, R., Kaucka, M., Kastriti, M.E., Petersen, J., Chontorotzea, T., Englmaier, L., Akkuratova, N., Yang, Y., Haring, M., Dyachuk, V., et al. (2019). Spatiotemporal structure of cell fate decisions in murine neural crest. Science 364, eaas9536. https://doi.org/10.1126/science.aas9536
- Stahl, P.L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., Giacomello, S., Asp, M., Westholm, J.O., Huss, M., et al. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78-82. https://doi.org/10.1126/science.aaf2403
- Tiklova, K., Bjorklund, A.K., Lahti, L., Fiorenzano, A., Nolbrant, S., Gillberg, L., Volakakis, N., Yokota, C., Hilscher, M.M., Hauling, T., et al. (2019). Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. Nat. Commun. 10, 581. https://doi.org/10.1038/s41467-019-08453-1
- Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386. https://doi.org/10.1038/nbt.2859
- van den Brink, S.C., Alemany, A., van Batenburg, V., Moris, N., Blotenburg, M., Vivie, J., Baillie-Johnson, P., Nichols, J., Sonnen, K.F., Martinez Arias, A., et al. (2020). Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 2020 Feb 19 [Epub]. https://doi.org/10.1038/s41586-020-2024-3
- Vickovic, S., Eraslan, G., Salmen, F., Klughammer, J., Stenbeck, L., Aijo, T., Bonneau, R., Bergenstrahle, L., Fernandez Navarro, J., Gould, J., et al. (2019). High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987-990. https://doi.org/10.1038/s41592-019-0548-y
- Wang, G., Moffitt, J.R., and Zhuang, X. (2018a). Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep. 8, 4847. https://doi.org/10.1038/s41598-018-22297-7
- Wang, X., Allen, W.E., Wright, M.A., Sylwestrak, E.L., Samusik, N., Vesuna, S., Evans, K., Liu, C., Ramakrishnan, C., Liu, J., et al. (2018b). Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691. https://doi.org/10.1126/science.aat5691
- Xia, C., Fan, J., Emanuel, G., Hao, J., and Zhuang, X. (2019). Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl. Acad. Sci. U. S. A. 116, 19490-19499. https://doi.org/10.1073/pnas.1912459116
- Xue, Y., Liu, D., Cui, G., Ding, Y., Ai, D., Gao, S., Zhang, Y., Suo, S., Wang, X., Lv, P., et al. (2019). A 3D atlas of hematopoietic stem and progenitor cell expansion by multi-dimensional RNA-seq analysis. Cell Rep. 27, 1567- 1578.e5. https://doi.org/10.1016/j.celrep.2019.04.030
Cited by
- Emerging Technologies to Study the Glomerular Filtration Barrier vol.8, 2020, https://doi.org/10.3389/fmed.2021.772883
- Significance of single-cell and spatial transcriptomes in cell biology and toxicology vol.37, pp.1, 2020, https://doi.org/10.1007/s10565-020-09576-8
- A Palette of Cytokines to Measure Anti-Tumor Efficacy of T Cell-Based Therapeutics vol.13, pp.4, 2020, https://doi.org/10.3390/cancers13040821
- Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Subtypes vol.44, pp.7, 2020, https://doi.org/10.14348/molcells.2021.0042
- Exploring tissue architecture using spatial transcriptomics vol.596, pp.7871, 2021, https://doi.org/10.1038/s41586-021-03634-9
- Current tools to interrogate microglial biology vol.109, pp.18, 2020, https://doi.org/10.1016/j.neuron.2021.07.004
- NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport vol.16, pp.9, 2021, https://doi.org/10.1038/s41596-021-00573-7