DOI QR코드

DOI QR Code

Phytochemical and Antioxidant Properties of Korean Wheat Sprouts

  • Park, Jae-Jung (School of Applied Biosciences, Kyungpook National University) ;
  • Park, Yong-Sung (School of Applied Biosciences, Kyungpook National University) ;
  • Dhungana, Sanjeev Kumar (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Il-Doo (International Institute of Agricultural Research & Development, Kyungpook National University) ;
  • Shin, Dong-Hyun (School of Applied Biosciences, Kyungpook National University)
  • Received : 2020.03.30
  • Accepted : 2020.05.14
  • Published : 2020.06.01

Abstract

Wheat is an economically important cereal worldwide and is a staple food in many countries. Extensive researches have been performed on the nutritional value and antioxidant potentials of sprouts of legumes like soybean, however very limited studies have been carried out on the sprouts of Korean wheat cultivar. The objective of this study was to investigate the phytochemical and antioxidant potentials of Korean wheat sprouts. The sprouts were grown for 10 (WS-10), 20 (WS-20), and 30 (WS-30) days at room temperature. The pH, color, chlorophyll, free amino acid, 1,1-diphenly-2-picrylhydrazyl (DPPH), and total polyphenol content of the sprout samples were determined. The pH of sprouts was increased in the older sprouts. Color values were significantly influenced by the age of sprouts. The chlorophyll content was lowest but the total free amino acid content was highest in WS-30. On the other hand, the DPPH free radical scavenging potential and total polyphenol content were lower in WS-30. The results suggested that Korean wheat sprouts could be a potential source of nutrients and natural antioxidants.

Keywords

References

  1. Adhikari, B., S.K. Dhungana, I.D. Kim and D.H. Shin. 2019. Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. J. Saudi Soc. Agric. Sci. https://doi.org/10.1016/j.jssas.2019.02.001
  2. Adom, K.K. and R.H. Liu. 2002. Antioxidant activity of grains. J. Agric. Food Chem. 50:6182-6187. https://doi.org/10.1021/jf0205099
  3. Alvarez‐Jubete, L., H. Wijngaard, E.K. Arendt and E. Gallagher. 2010. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chem. 119:770-778. https://doi.org/10.1016/j.foodchem.2009.07.032
  4. Anson, N.M., Berg Rvd, R. Havenaar, A. Bast and G.R.M.M. Haenen. 2008. Ferulic acid from aleurone determines the antioxidant potency of wheat grain (Triticum aestivum L.). J Agric. Food Chem. 56:5589-5594. https://doi.org/10.1021/jf800445k
  5. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1-15. https://doi.org/10.1104/pp.24.1.1
  6. Aysegul, K., O. Mehmet and C. Bekir. 2007. Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chem. 101:212-218. https://doi.org/10.1016/j.foodchem.2006.01.019
  7. Blois, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181:1199-1200. https://doi.org/10.1038/1811199a0
  8. Chernomorsky, S., A. Segelman and R.D. Poretz. 1999. Effect of dietary chlorophyll derivatives on mutagenesis and tumor cell growth. Teratog. Carcinog. Mutagen 19:313-22. https://doi.org/10.1002/(SICI)1520-6866(1999)19:5<313::AID-TCM1>3.0.CO;2-G
  9. Dhungana, S.K., B.R. Kim, J.H. Son, H.R. Kim and D.H. Shin. 2015. Comparative study of CaMsrB2 gene containing drought‐tolerant transgenic rice (Oryza sativa L.) and nontransgenic counterpart. J. Agron. Crop Sci. 201:10-16. https://doi.org/10.1111/jac.12100
  10. Dhungana, S.K., I.D. Kim, H.S. Kwak and D.H. Shin. 2016. Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean [Glycine max (L.) Merr.]. Pestic. Biochem. Physiol. 130:39-43. https://doi.org/10.1016/j.pestbp.2015.12.002
  11. Dinelli, G., A. Segura-Carretero, R. Di Silvestro, I. Marotti, D. Arraez-Roman, S. Benedettelli, L. Ghiselli and A. Fernadez-Gutierrez. 2011. Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A 1218:7670-7681. https://doi.org/10.1016/j.chroma.2011.05.065
  12. Dykes, L. and L.W. Rooney. 2007. Phenolic compounds in cereal grains and their health benefits. Cereal Food World 52:105-111.
  13. Frankle, E.N. and A.S. Meyer. 2000. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 80:1925-1941. https://doi.org/10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4
  14. Gong, Q., D. Yang, M. Jiang, J. Zheng and B. Peng. 2020. L-aspartic acid promotes fish survival against Vibrio alginolyticus infection through nitric oxide-induced phagocytosis. Fish Shellfish Immun. 97:359-366. https://doi.org/10.1016/j.fsi.2019.12.061
  15. Gulewicz, P., C. Martinez-Villaluenga, J. Frias, D. Ciesiolka, K. Gulewicz and C. Vidal-Valverde. 2008. Effect of germination on the protein fraction composition of different lupin seeds. Food Chem. 107:830-844. https://doi.org/10.1016/j.foodchem.2007.08.087
  16. Je, J.Y., P.J. Park, W.K. Jung and S.K. Kim. 2005. Amino acid changes in fermented oyster (Crassostrea gigas) sauce with different fermentation periods. Food Chem. 91:15-18. https://doi.org/10.1016/j.foodchem.2004.05.061
  17. Kim, I.D., S.K. Dhungana, Y.G. Chae, N.K. Son and D.H. Shin. 2016. Quality characteristics of 'Dongchul' persimmon (Diospyros kaki Thunb.) fruit grown in Gangwondo, Korea. Korean J. Plant Res. 29:313-321. https://doi.org/10.7732/kjpr.2016.29.3.313
  18. Kim, I.D., J.W. Lee, S.J. Kim, J.W. Cho, S.K. Dhungana, Y.S. Lim and D.H. Shin. 2014. Exogenous application of natural extracts of persimmon (Diospyros kaki Thunb.) can help in maintaining nutritional and mineral composition of dried persimmon. Afr. J. Biotechnol. 13:2231-2239. https://doi.org/10.5897/AJB2013.13503
  19. Kim, K.H., R. Tsao, R. Yang and S.W. Cui. 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 95:466-473. https://doi.org/10.1016/j.foodchem.2005.01.032
  20. Krogsgaard-Larsen, P. 1989. GABA receptors: In Williams, M., R.A. Glennon and P.M.W.M. Timmermans (eds.), Receptor Phamacology and Function. Marcel Dekker Inc., New York, NY (USA).
  21. Kurutas, E.B. 2015. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr J. 15:71. https://doi.org/10.1186/s12937-016-0186-5
  22. Liu, R.H. 2007. Whole grain phytochemicals and health. J. Cereal Sci. 46:207-219. https://doi.org/10.1016/j.jcs.2007.06.010
  23. Liyana‐Pathirana, C.M. and F. Shahidi. 2007. The antioxidant potential of milling fractions from breadwheat and durum. J. Cereal Sci. 45:238-247. https://doi.org/10.1016/j.jcs.2006.08.007
  24. Luo, Y.W., W.H. Xie, X.X. Jin, Q. Wang and X.M. Zai. 2013. Effects of germination and cooking for enhanced in vitro iron, calcium and zinc bioaccessibility from faba bean, azuki bean and mung bean sprouts. CyTA-J. Food 11:318-323. https://doi.org/10.1080/19476337.2012.757756
  25. Mody, I., Y. De Koninck, T.S. Otis and I. Soltesz. 1994. Bridging the cleft at GABA synapses in the brain. Trend. Neurosci. 17:517-525. https://doi.org/10.1016/0166-2236(94)90155-4
  26. Mpofu, A., H.D. Sapirstein and T. Beta. 2006. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agric. Food Chem. 54:1265-1270. https://doi.org/10.1021/jf052683d
  27. Murray, J.R., A.G. Smith and W.P Hackett. 1994. Differential dihydroflavonol reductase transcription and anthocyanin pigmentation in the juvenile and mature phases of ivy (Hedera helix L.). Planta 194:102-109. https://doi.org/10.1007/BF00201040
  28. Neill, S.O., K.S. Gould, P.A. Kilmartin, K.A. Mitchell and K.R. Markham. 2002. Antioxidant activities of red versus green leaves in Elatostema rugosum. Plant Cell Environ. 25:539-547. https://doi.org/10.1046/j.1365-3040.2002.00837.x
  29. Nikmaram, N., B.N Dar, S. Roohinejad, M. Koubaa, F.J. Barba, R. Greiner and S.K. Johnson. 2017. Recent advances in ${\gamma}$‐ aminobutyric acid (GABA) properties in pulses: An overview. J. Sci. Food Agric. 97:2681-2689. https://doi.org/10.1002/jsfa.8283
  30. Nikolaeva, M.K., S.N. Maevskaya, A.G. Shugaev and N.G. Bukhov. 2010. Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russ. J. Plant Physiol. 57:87-95. https://doi.org/10.1134/S1021443710010127
  31. Nozzolillo, C., P. Isabelle and G. Das. 1990. Seasonal changes in the phenolic constituents of jack pine seedlings (Pinus banksiana) in relation to the purpling phenomenon. Can. J. Bot. 68:2010-2017. https://doi.org/10.1139/b90-263
  32. Oh, C.H. and S.H. Oh. 2004. Effect of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food 7:19-23. https://doi.org/10.1089/109662004322984653
  33. Rochfort, S. and J. Panozzo. 2007. Phytochemicals for health, the role of pulses. J. Agric. Food. Chem. 55:7981-7994. https://doi.org/10.1021/jf071704w
  34. Sarkar, D., A. Sharma and G. Talukder. 1994. Chlorophyll and chlorophyllin as modifiers of genotoxic effects. Mutat. Res. /Rev. Genet. Toxicol. 318:239-247. https://doi.org/10.1016/0165-1110(94)90017-5
  35. Singleton, V.L., R. Orthofer and R.M. Lamuela-Ravents. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent: In Methods in Enzymology. Packer, L. (ed.), Academic Press, Cambridge, MA. Vol. 299, pp. 152-178.
  36. Slavin, J. 2004. Whole grains and human health. Nutr. Res. Rev. 17:99-110. https://doi.org/10.1079/NRR200374
  37. Su, C. 2013. Total polyphenols and bioactivity of seeds and sprouts in several legumes. Curr. Pharma. Des. 19:6112-6124. https://doi.org/10.2174/1381612811319340005
  38. Swieca, M., D. Dziki and U. Gawlik-Dziki. 2017. Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour. Food Chem. 228:643-648. https://doi.org/10.1016/j.foodchem.2017.02.052
  39. Tyl, C. and G.D. Sadler. 2017. pH and titratable acidity: In Food Analysis, Springer, Cham, Switzerland. pp. 389-406.
  40. Vaher, M, K. Matso, T. Levandi, K. Helmja and M.K. van Hung. 2010. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem. 2:76-82. https://doi.org/10.1016/j.proche.2009.12.013
  41. Van Hung, P., D.W. Hatcher and W. Barker. 2011. Phenolic acid composition of sprouted wheats by ultra‐performance liquid chromatography (UPLC) and their antioxidant activities. Food Chem. 126:1896-1901. https://doi.org/10.1016/j.foodchem.2010.12.015
  42. Wei, Y., M.J. Shohag, F. Ying, X. Yang, C. Wu and Y. Wang. 2013. Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability. Food Chem. 138:1952-1958. https://doi.org/10.1016/j.foodchem.2012.09.134
  43. Yun, M.H., H.R. Jeong, J.H. Yoo, S.K. Roy, S.J. Kwon, J.H. Kim, H.C. Chun, K.Y. Jung, S.W. Cho and S.H. Woo. 2018. Proteome characterization of sorghum (Sorghum bicolor L.) at vegetative stage under waterlogging stress. Korean J. Plant Res. 31(2):124-135. https://doi.org/10.7732/KJPR.2018.31.2.124
  44. Zhang, Y., L. Wang, Y. Yao, J. Yan and H. Zhonghu. 2012. Phenolic acid profiles of Chinese wheat cultivars. J. Cereal Sci. 6:629-635.