DOI QR코드

DOI QR Code

Biotic 물질이 콩 발아 중 Isoflavone 함량에 미치는 영향

Effect of Biotic Substances on Isoflavone Content in Soybean Germination

  • 김서영 (순천향대학교 의료생명공학과) ;
  • 송영호 (순천향대학교 의료생명공학과) ;
  • 이유정 (순천향대학교 의료생명공학과) ;
  • 김홍식 (국립식량과학원 남부작물부) ;
  • 김용호 (순천향대학교 의료생명공학과)
  • Kim, Seo-Young (Department of Medical Biotechnology, SoonChunHyang University) ;
  • Song, Young-Ho (Department of Medical Biotechnology, SoonChunHyang University) ;
  • Yi, Yoo-Jung (Department of Medical Biotechnology, SoonChunHyang University) ;
  • Kim, Hong-Sik (Department of Southern Area Crop Science, NICS, RDA) ;
  • Kim, Yong-Ho (Department of Medical Biotechnology, SoonChunHyang University)
  • 투고 : 2020.02.17
  • 심사 : 2020.04.01
  • 발행 : 2020.06.01

초록

콩 발아기간 중 몇 가지 면역활성제(자스몬산, 키토산, 베타글루칸 및 게르마늄)와 녹차 및 인삼 추출물이 이소플라본 함량 증대에 미치는 영향에 대하여 알아보았다. 1. 대부분의 처리에서 발아시간이 경과함에 따라 이소플라본 함량이 높아졌는데 면역활성제 중에서는 키토산 처리가 이소플라본 함량 증대에 가장 큰 효과가 있었으며 약초추출물 처리는 효과가 미미하였다. 2. 품종별 이소플라본 함량은 모든 처리에서 대풍2호>우람>풍산나물콩의 순서로 높았으며 이소플라본 함량은 품종과 biotic 물질 처리간 상호작용도 영향을 미치는 것으로 판단된다. 3. 개별 이소플라본 종류별 함량을 분석한 결과 malonyl-glucoside>glucoside>aglycone>acetyl-glucoside 순서로 함량이 높았으며 발아가 진행되면서 aglycone 함량이 증가하는 경향이었다. 따라서 콩 발아기간 중 biotic 물질 처리는 어느 정도 이소플라본 함량을 증대시키며 품종과 물질처리간 상호작용 효과도 있음을 확인할 수 있었다.

For humans, soybean and soybean products are the main dietary sources of isoflvones, which are polyphenolic compounds that represent one of the most common categories of phytoestrogens. The objective of this study was to determine isoflavone concentrations in soybean cultivars during germination when treated with some biotic substances. Three soybean cultivars were germinated in replicated trials in 2018/2019 and their individual and total isoflavone concentrations were determined using HPLC (High-Performance Liquid Chromatography). Significant differences were observed in total isoflavone content were observed among cultivars regardless of years and treatments. 'Daepung2-ho' and 'Uram' had significantly higher total isoflavones than 'Pungsannaul-kong'. Differences among treatments were also significant for total isoflavone content. In 2018, with chitosan treatment, total isoflavone concentration ranged from 551.15 to 7584.07 ㎍ g-1, with an average of 2972.64 ㎍ g-1 across cultivars. In 2019, there was no significant difference among treatments in total isoflavone content. Regarding individual isoflavone concentrations, the malonyl-glucoside groups accounted for over 85% of the total isoflavone content, which is indicated that these groups play an important role with regard to isoflavone components in soybean seeds. The individual proportions in the total concentrations of isoflavones varied according to germination period and seed tissues. Glucosides and malonyl-glucosides showed differences in concentrations among seed tissues, aglycones were further accumulated as germination period was progressed. This study suggests that biotic substances have an impact on seed isoflavone content during germination. However, cultivars with consistently high or low isoflavone concentrations across biotic substance treatments were identified desspite differences in germination period and seed tissues, demonstrating that the genetic factor plays the most important role in isoflavone accumulation.

키워드

참고문헌

  1. Ahmad, M. Z., P. Li, J. Wang, N. U. Rehman, and J. Zhao. 2017. Isoflavone malonyltransferases GmlMaT1 and GmlMaT3 differently modify isoflavone glucosides in soybean under various stresses. Front. Plant Sci. 8:735. doi:10.3389/fpls.2017.00735.
  2. Choi, S. D., Y. H. Kim, S. H. Nam, M. Y. Shon, and J. H. Choi. 2003. Changes in major taste components of soybean sprout germinated with extract of Korean Panax ginseng. Korean J. Lie Sci. 13(3) : 273-279.
  3. Gutierrez-Gonzalez, J. J., S. K. Guttikonda, L. P. Tran, D. L. Aldrich, R. Zhong, O. Yu, H. T. Nguyen, and D.A. Sleper. 2010. Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant and Cell Physiology. 51(6) : 936-948. https://doi.org/10.1093/pcp/pcq065
  4. Gutierrez-Gonzalez, J. J., X. Wu, J. Zhang, D. Lee, M. Ellersieck, L. G. Shannon, et al. 2009. Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theor. Appl. Genet. 119:1069-1083. https://doi.org/10.1007/s00122-009-1109-z
  5. Hasanah, Y., T. C. Nisa, H. Armidin, and H. Hanum. 2015. Isoflavone content of soybean [Glycine max (L). Merr.] cultivars with different nitrogen sources and growing season under dry land conditions. JAEID. 109:5-17.
  6. Hong, S. Y., S.J. Kim, H. B. Sohn, Y. H. Kim, and K. S. Cho. 2018. Comparison of Isoflavone Content in 43 Soybean Varieties Adapted to Highland Cultivation Areas. Korean J. Breed. Sci. 50(4) : 442-452. https://doi.org/10.9787/KJBS.2018.50.4.442
  7. Jo, M. S., J. H. Lee, M. H. Ma, S. Y. Kim, C. R. Byun, Y. J. Yi, J. W. Lee, D. J. Choi, H. S. Kim, and Y. H. Kim. 2019. Influence of abiotic treatments on isoflavone accumulation in soybean seeds during germination. Korean J. Crop Sci. 64(1) : 18-24. https://doi.org/10.7740/KJCS.2019.64.1.018
  8. Kim, E. J., K. I. Lee, and K. Y. Park. 2002. Quality analysis of nutrients in soybean sprouts cultured with germanium. J. Korean Soc. Food Sci. Nutr. 31(6) : 1150-1154. https://doi.org/10.3746/JKFN.2002.31.6.1150
  9. Kim, K. S., S. Y. Jung, J. G. Chung, and M. K. Shin. 2006. Antioxidative and amylase activity of soybean sprouts by treatment of green tea water extract. J. East Asian Soc. Dietary Life. 16(4) : 447-452.
  10. Ko, K. P., Y. Yeo, J. H. Yoon, C. S. Kim, S. Tokudome, L. T. Ngoan, C. Koriyama, Y. K. Lim, S. H. Chang, H. R. Shin, D. Kang, S. K. Park, C. H Kang, and K. Y. Yoo. 2017. Plasma phytoestrogens concentration and risk of colorectal cancer in two different Asian populations. Clinical Nutrition http://dx.doi.org/10.1016/j.clnu.2017.07.014.
  11. Ko, K.P. 2014. Isoflavones: Chemistry, Analysis, Functions and Effects on Health and Cancer. Asian Pac J Cancer Prev, 15(17): 7001-7010. https://doi.org/10.7314/APJCP.2014.15.17.7001
  12. Lee, J. H., I. M. Chung, S. J. Park, W. H. Kim, S. Y. Kim, J. A. Kim, and W. S. Jung. 2004. Manipulating isoflavone levels in mungbean sprouts by chemical treatment. Korean J. Crop Sci. 49(6) : 528-532.
  13. Lee, J. W., Y. J. Yi, J. H. Lee, M. S. Jo, D. J. Choi, M. H. Ma, H. S. Kim, D. O. Kim, H. T. Yun, and Y. H. Kim. 2018. Quantification of isoflavone malonylglucosides in soybean seed during germination. Korean J. Crop Sci. 63(3) : 239-247. https://doi.org/10.7740/KJCS.2018.63.3.239
  14. Lee, Y. S, Y. H. Kim, and S. B. Kim. 2005. Changes in the respiration, growth, and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. Hortscience 40(5) : 1333-13335. https://doi.org/10.21273/hortsci.40.5.1333
  15. Ludmila Krizova, L., K. Dadakova, J. Kasparovska, and T. Kasparovsky. 2019. Isoflavones. Molecules 24(6). https://doi.org/10.3390/molecules24061076.
  16. Miladinovic, J., V. Dordevic, S. Balesevic-Tubic, K. Petrovic, M. Ceran, J. Cvejic, M. Bursac, and D. Miladinovic. 2019. Increase of isoflavones in the aglycone form in soybeans by targeted crossings of cultivated breeding material. Scientific Reports. https://doi.org/10.1038/s41598-019-46817-1.
  17. Oh, B. Y. 2004. Effects of elicitor treatment on changes of saponin content in soybean sprout during cultivation. Ph.D Thesis. Dept. of Homeeconomics. Mokpo Natl. Univ.
  18. Wang, Q., X. Ge, X. Tian, Y. Zhang, J. Zhang, and P. Zhang. 2013. Soy isoflavone: The multipurpose phytochemical (Review). Biomed. Rep. 1(5) : 697-701. https://doi.org/10.3892/br.2013.129
  19. Yang, Hui., J. Gao, A. Yang, and H. Chen. 2015. The ultrasoundtreated soybean seeds improve eddibility and nutritional quality of soybean sprouts. Food Research International. 77 : 704-710. https://doi.org/10.1016/j.foodres.2015.01.011
  20. Yoneyama, K., T. Akashi, and T. Aoki. 2016. Molecular characterization of soybean pterocarpan 2-dimethylallyltransferase in glyceollin biosynthesis: Local gene and whole-genome duplications of prenyltransferase gene led to the structural diversity of soybean prenylated isoflavonoids. Plant Cell Physiol. 57(12) :2497-2509. https://doi.org/10.1093/pcp/pcw178
  21. Yuk, H. J., Y. H. Song, M. J. Curtis-Long, D. W. Kim, S. G. Woo, Y. B. Lee, Z. Uddin, C. Y. Kim, and K. H. Park. 2016. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean leaves. J. Agric. Food Chem. 64 : 7315-7324. https://doi.org/10.1021/acs.jafc.6b02543
  22. Yun, J., X. Li, X. Fan, W. Li, and Y. Jiang. 2013. Growth and quality of soybeans sprouts as affected by gamma irradiation. Radiation Physics Chem. 82 : 106-111. https://doi.org/10.1016/j.radphyschem.2012.09.004
  23. Zhang, J., Y. Ge, F. Han, B. Li, S. Yan, J. Sun, and L. Wang. 2014. Isoflavone Content of Soybean Cultivars from Maturity Group 0 to VI Grown in Northern and Southern China. J. Am. Oil Chem. Soc. 91(6) : 1019-1028. https://doi.org/10.1007/s11746-014-2440-3