DOI QR코드

DOI QR Code

Development of pan coefficient model for estimating evaporation: focused on Seoul station

증발량 산정을 위한 증발접시계수 산정모형 개발: 서울지점을 중심으로

  • Rim, Chang-Soo (Department of Civil Engineering, Kyonggi University)
  • 임창수 (경기대학교 토목공학과)
  • Received : 2020.04.21
  • Accepted : 2020.06.15
  • Published : 2020.07.31

Abstract

The six current models for estimating pan coefficient were applied to test the applicability of models in Seoul, South Korea. The models are Cuenca's model, Snyder's model, Pereira et al.'s model, Allen et al.'s model, Orang's model, and Raghuwanshi and Wallender's model. The estimated pan coefficients were compared with measured one. The measured pan coefficient was obtained by using measured pan evaporation and FAO Penman-Monteith reference evapotranspiration. Estimated evaporation by using estimated pan coefficients was compared with measured one. Furthermore, model for estimating pan coefficient in Seoul was developed. When applying 6 current models for 10 m, 15 m and 20 m fetch distances, pan coefficient estimates from Snyder's model were most similar to measured pan coefficients for all fetch distances. On the other hand, pan coefficient estimates from Pereira et al.'s model were most different from measured one. Therefore, model for estimating pan coefficient in Seoul was developed by modifying Snyder's model. When applying developed model, estimated monthly average evaporation was 92.1 mm for 10 m, 15 m and 20 m fetch distances and measured one was 91.9 mm, indicating that evaporation estimate from developed model is closest to measured one, compared with those of current models.

서울지역에 대해서 6개의 증발접시계수 산정모형들로부터 산정된 증발접시계수를 측정된 증발접시 증발량과 FAO Penman-Monteith 기준증발산량으로부터 산정된 증발접시계수와 비교함으로서 증발접시계수 산정모형들의 활용 적합성을 평가하였다. 적용된 6개의 모형은 Cuenca 모형, Snyder 모형, Pereira 등의 모형, Allen 등의 모형, Orang 모형, 그리고 Raghuwanshi와 Wallender 모형이다. 또한 산정된 증발접시계수를 이용하여 산정된 증발량을 관측된 증발량과 비교분석하였으며, 비교결과를 바탕으로 서울지역에 대해서 증발접시계수 산정모형을 개발하였다. 연구결과에 의하면 기존에 연구자들에 의해서 제안된 6개 증발접시계수 산정모형을 10 m, 15 m 그리고 20 m의 풍역대 거리로 설정하여 적용하는 경우 모든 풍역대 거리에서 Snyder에 의해서 제안된 증발접시계수가 가장 양호한 증발접시계수 산정값을 보였다. 반면에 Pereira 등의 모형으로부터 산정된 증발접시계수 값이 관측값과 가장 큰 차이를 보였다. 따라서 서울지역을 대상으로 Snyder모형을 수정한 증발접시계수 산정모형을 유도하였다. 본 연구에서 제시한 모형을 적용하는 경우 모든 풍역대 거리(10 m, 15 m, 20 m) 조건에서 산정된 월평균 증발량은 동일하게 92.1 mm이고 관측된 월평균 증발량은 91.9 mm로서 다른 모형들과 비교하여 가장 근사한 결과를 보였다.

Keywords

References

  1. Allen, R.G., Peretira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, ISBN 92-5-104219-5.
  2. Allen, R.G., Smith, M., Perrier, A., and Periira, L.S. (1994). "An update for the definition of reference evapotranspiration." International Commission on Irrigation and Drainage Bulletin, Vol. 43, No. 2, pp. 1-34.
  3. Alvarez, V.M., Gonzalez-Real, M.M., Baile, A., and Martinez, M. (2007). "A novel approach for estimating the pan coefficient of irrigation water reservoirs: Application to South Spain." Agricultural Water Management, Vol. 92, pp. 29-40. https://doi.org/10.1016/j.agwat.2007.04.011
  4. Cho, H.-K. (1973). "On lake evaporation from climatological data in Korea." Journal of Korean Association of Hydrological Sciences, Vol. 6, pp. 5-12.
  5. Cuenca, R.H. (1989). Irrigation system design: An engineering approach. Prentice Hall, Eaglewood Cliffs, N.J., U.S.
  6. Doorenbos, J., and Pruitt, W.O. (1977). Crop water requirements. Rome, FAO, Irrigation and Drainage paper 24.
  7. Droogers, P., and Allen, R.G. (2002). "Estimating reference evapotranspiration under inaccurate data conditions." Irrigation and Drainage Systems, Vol. 16, No. 1, pp. 33-45. https://doi.org/10.1023/A:1015508322413
  8. Frevert, D.K., Hill, R.W., and Braaten, B.C. (1983). "Estimation of FAO evapotranspiration coefficients." Journal of Irrigation and Drainage Engineering, Vol. 109, pp. 265-270. https://doi.org/10.1061/(ASCE)0733-9437(1983)109:2(265)
  9. Fu, G., Liu, C., Chen, S., and Hong, J. (2004). "Investigating the conversion coefficients for free water surface evaporation of different evaporation pans." Hydrological Processes, Vol. 18, pp. 2247-2262. https://doi.org/10.1002/hyp.5526
  10. Gundekar, H.G., Khodke, U.M., Sarkar, S., and Rai, R.K. (2008). "Evaluation of pan coefficient for reference crop evapotranspiration for semi-arid region." Irrigation Science, Vol. 26, pp. 169-175. https://doi.org/10.1007/s00271-007-0083-y
  11. Han, J.-S., and Lee, B.-Y. (2005). "Measurement and analysis of free water evaporation at HaeNam paddy field." Korean Journal of Agricultural and Forest Meteorology, Vol. 7, pp. 91-97.
  12. Irmak, S., Haman, D.Z., and Jones, J.W. (2002). "Evaluation of Class A pan coefficients for estimating reference evapotranspiration in humid location." Journal of Irrigation and Drainage Engineering, Vol. 128, pp. 153-159. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:3(153)
  13. Kim, S.-W. (2010). "Modeling of daily pan evaporation using the limited climatic variables and polynomial networks approach." Proceedings of Korea Water Resources Association, pp. 1596-1599.
  14. Kohler, M.A., Nordenson, T.J., and Fox, W.E. (1955). Evaporation from pans and lakes. U.S. Dept. Commerce Research Paper No. 38.
  15. Marco, A., and Fonseca, C. (2002). "Reference evapotranspiration based on Class A pan evaporation." Scientia Agricola, Vol. 59, No. 3, pp. 417-420. https://doi.org/10.1590/S0103-90162002000300001
  16. Monteith, J.L. (1965). "Evaporation and environment." Symposia of the Society for Experimental Biology, Vol. 19, pp. 205-224.
  17. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models 1: A discussion of principles." Journal of Hydrology, Vol. 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  18. Orang, M. (1998). Potential accuracy of the popular non-linear regression equations for estimating Pan coefficients values in the original and FAO-24 tables. Unpublished California Department of Water Resources Report, Sacramento, C.A., U.S.
  19. Pereira, A.R., Villanova, N., Pereira, A.S., and Barbieri, V.A. (1995). "A model for the Class A pan coefficients." Agricultural Water Management, Vol. 76, pp. 75-82.
  20. Raghuwanshi, N.S., and Wallender, W.W. (1998). "Converting from pan evaporation to evapotranspiration." Journal of Irrigation and Drainage Engineering, Vol. 124, pp. 275-277. https://doi.org/10.1061/(ASCE)0733-9437(1998)124:5(275)
  21. Rahimikhoob, A. (2009). "An evaluation of common pan coefficient equations to estimate reference evapotranspiration in a subtropical climate(north of Iran)." Irrigation Science, Vol. 27, pp. 289-296. https://doi.org/10.1007/s00271-009-0145-4
  22. Rim, C.-S. (2017a). "Estimation of small pan evaporation using temperature data." Journal of Korea Water Resources Association, Vol. 50, No. 1, pp. 37-53. https://doi.org/10.3741/JKWRA.2017.50.1.37
  23. Rim, C.-S. (2017b). "Applicability evaluation of aerodymaic approaches for evaporation estimation using pan evaporation data." Journal of Korea Water Resources Association, Vol. 50, No. 11, pp. 781-793. https://doi.org/10.3741/JKWRA.2017.50.11.781
  24. Rim, C.-S. (2019). "An evaluation of evaporation estimates according to solar radiation models." Journal of Korea Water Resources Association, Vol. 52, No. 12, pp. 1033-1046. https://doi.org/10.3741/JKWRA.2019.52.12.1033
  25. Sabziparvar, A.A., Tabari, H., Aeini, A., and Ghafouri, M. (2010). "Evaluation of Class A pan coefficient methods for estimation of reference crop evpotranparation in cold semi-arid warm arid climates." Water Resources Management, Vol. 24, pp. 909-920. https://doi.org/10.1007/s11269-009-9478-2
  26. Seo, Y.-M., and Kim, S.-W. (2018). "Pan evaporation modeling using multivariate adaptive regression splines." Proceedings of Korea Water Resources Association, pp. 351-354.
  27. Smajstria, A.G., Zazueta, F.S., Clark, G.A., and Pitts, D.J. (2000). "Irrigation scheduling with evaporation pans." Florida Cooperative Extension Service, University of Florida, F.L., U.S., Bulletin, Vol. 254.
  28. Snyder, R.L. (1992). "Equation for evaporation pan to evapotranspiration conversions." Journal of Irrigation and Drainage Engineering, Vol. 118, No. 6, pp. 977-980. https://doi.org/10.1061/(ASCE)0733-9437(1992)118:6(977)
  29. SreeMaheswari, C.H., and Jyothy, S.A. (2017). "Evaluation of Class A pan coefficient models for estimation of reference evapotranspiration using Penman-Monteith method." International Journal of Science Technology and Engineering, Vol. 3, No. 7, pp. 90-93.
  30. Stan, F.-L., and Neculau, G. (2015). "Estimation of reference evapotranspiration from pan evaporation data in Romania." Romanian Journal of Meteorology, Vol. 12, No. 1-2, pp. 65-73.
  31. Tabari, H., Mark, E., and Trajkovic, S. (2013). "Comparative analysis of 31 reference evapotranspiration methods under humid conditions." Irrigation Science, Vol. 31, No. 2, pp. 107-117. https://doi.org/10.1007/s00271-011-0295-z