DOI QR코드

DOI QR Code

Organic matrix-free imaging mass spectrometry

  • Kim, Eunjin (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Jisu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Choi, Inseong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Jeongwook (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Yeo, Woon-Seok (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2020.04.07
  • Published : 2020.07.31

Abstract

Mass spectrometry (MS) is an ideal tool for analyzing multiple types of (bio)molecular information simultaneously in complex biological systems. In addition, MS provides structural information on targets, and can easily discriminate between true analytes and background. Therefore, imaging mass spectrometry (IMS) enables not only visualization of tissues to give positional information on targets but also allows for molecular analysis of targets by affording the molecular weights. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS is particularly effective and is generally used for IMS. However, the requirement for an organic matrix raises several limitations that get in the way of accurate and reliable images and hampers imaging of small molecules such as drugs and their metabolites. To overcome these problems, various organic matrix-free LDI IMS systems have been developed, mostly utilizing nanostructured surfaces and inorganic nanoparticles as an alternative to the organic matrix. This minireview highlights and focuses on the progress in organic matrix-free LDI IMS and briefly discusses the use of other IMS techniques such as desorption electrospray ionization, laser ablation electrospray ionization, and secondary ion mass spectrometry.

Keywords

References

  1. Chughtai K and Heeren RMA (2010) Mass Spectrometric Imaging for Biomedical Tissue Analysis. Chem Rev 110, 3237-3277 https://doi.org/10.1021/cr100012c
  2. Buchberger AR, DeLaney K, Johnson J and Li L (2018) Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal Chem 90, 240-265 https://doi.org/10.1021/acs.analchem.7b04733
  3. Xu X, Zhong J, Su Y, Zou Z, He Y and Hou X (2019) A brief review on mass/optical spectrometry for imaging analysis of biological samples. Appl Spectrom Rev 54:1, 57-85
  4. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y and Yoshida T (1988) Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-of-flight Mass Spectrometry. Rapid Commun Mass Spectrom 2, 151-156 https://doi.org/10.1002/rcm.1290020802
  5. Karas M and Hillenkamp F (1988) Laser Desorption Ionziation of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal Chem 60, 2299-2301 https://doi.org/10.1021/ac00171a028
  6. Guinan T, Kirkbride P, Pigou PE, Ronci M, Kobus H and Voelcker NH (2015) Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics. Mass Spectrum Rev 34, 627-640 https://doi.org/10.1002/mas.21431
  7. Law KP and Larkin JR (2011) Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal Bioanal Chem 399, 2597-2622 https://doi.org/10.1007/s00216-010-4063-3
  8. Chiang CK, Yang Z, Lin YW, Chen WT, Lin HJ and Chang HT (2010) Detection of Proteins and Protein-Ligand Complexes Using HgTe Nanostructure Matrixes in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 82, 4543-4550 https://doi.org/10.1021/ac100550c
  9. Chiang NC, Chiang CK, Lin ZH, Chiu TC and Chang HT (2009) Detection of aminothiols through surface-assisted laser desorption/ionization mass spectrometry using mixed gold nanoparticles. Rapid Commun Mass Spectrom 23, 3063-3068 https://doi.org/10.1002/rcm.4221
  10. Wei J, Bruiak JM and Siuzdak G (1999) Desorptionionization mass spectrometry on porous silicon. Nature 399, 243-246 https://doi.org/10.1038/20400
  11. Kawasaki H, Sugitani T, Watanabe T, Yonewawa T, Moriwaki H and Arakawa R (2008) Layer-by-Layer Self-Assembled Mutilayer Films of Gold Nanoparticles for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 80, 7524-7533 https://doi.org/10.1021/ac800789t
  12. Luo G, Chen Y, Daniels H, Dubrow R and Vertes A (2006) Internal energy Transfer in Laser Desorption/Ionization form Silicon Nanowires. J Phys Chem B 110, 13381-13386 https://doi.org/10.1021/jp0609582
  13. Kawasaki H, Takahashi N, Fujimori H et al (2009) Functionalized pyrolytic highly oriented graphite polymer film for surface-assisted laser desorption/ionization mass spectrometry in environmental analysis. Rapid Commun Mass Spectrom 23, 3323-3332 https://doi.org/10.1002/rcm.4254
  14. Chiang CK, Chen WT and Chang HT (2010) Nanoparticlebased mass spectrometry for the analysis of biomolecules. Chem Soc Rev 40, 1269-1281 https://doi.org/10.1039/C0CS00050G
  15. Liu Q, Guo Z and He L (2007) Mass Spectrometry Imaging of Small Molecules Using Desorption/Ionization on Silicon. Anal Chem 79, 3535-3541 https://doi.org/10.1021/ac0611465
  16. Rudd D, Ronci M, Johnston MR, Guinan T, Voelcker NH and Benkendorff K (2015) Mass spectrometry imaging reveals new biological roles for choline esters and Tyrian purple precursors in muricid molluscs. Sci Rep 5, 13408 https://doi.org/10.1038/srep13408
  17. Ronci M, Rudd Dm, Guinan T, Benkendorff K and Voelcker NH (2012) Mass Spectrometry Imaging on Porous Silicon: Investigating the Distribution of Bioactives in Marine Mollusc Tissues. Anal Chem 84, 8996-9001 https://doi.org/10.1021/ac3027433
  18. Guinan T, Vedova CD, Kobus H and Voelcker NH (2015) Mass spectrometry imaging of fingerprint sweat on nanostructured silicon. Chem Commun 51, 6088-6091 https://doi.org/10.1039/C4CC08762C
  19. Gustafsson OJR, Guinan TM, Rudd D, Kobus H, Benkendorff K and Voelcker NH (2017) Metabolite mapping by consecutive nanostructure and silver-assisted mass spectrometry imaging on tissue sections. Rapid Commun Mass Spectrom 31, 991-1000 https://doi.org/10.1002/rcm.7869
  20. Northen TR, Yanes O, Northen MT et al (2007) Clathrate nanostructures for mass spectrometry. Nature 449, 1033-1036 https://doi.org/10.1038/nature06195
  21. Yanes O, Woo HK, Northen TR et al (2009) Nanostructure Initiator Mass Spectrometry: Tissue Imaging and direct Biofluid Analysis. Anal Chem 81, 2969-2975 https://doi.org/10.1021/ac802576q
  22. Patti GJ, Woo HK, Yanes O et al (2010) Detection of Carbohydrates and Steroids by Cation-Enhanced Nanostructure-Initiator Mass Spectrometry (NIMS) for Biofluid Analysis and Tissue Imaging. Anal Chem 82, 121-128 https://doi.org/10.1021/ac9014353
  23. O'Brien PJ, Lee M, Spilker ME et al (2013) Monitoring metabolic responses to chemotherapy in single cells and tumors using nanostructure-initiator mass spectrometry (NIMS) imaging. Cancer Metabol 1, 4 https://doi.org/10.1186/2049-3002-1-4
  24. Guinan TM, Gustafsson OJR, McPhee G, Kobus H and Voelcker NH (2015) Silver Coating for High-Mass-Accuracy Imaging Mass Spectrometry of Fingerprints on Nanostructured Silicon. Anal Chem 87, 11195-11202 https://doi.org/10.1021/acs.analchem.5b02567
  25. Calavia R, Annanouch FE, Correig X and Yanes O (2012) Nanostructure Initiator Mass Spectrometry for tissue imaging in metabolomics: Future prospects and perspectives. J Proteom 75, 5061-5068 https://doi.org/10.1016/j.jprot.2012.05.002
  26. Li Y, Cao X, Zhan L et al (2018) Hot electron transfer promotes ion production in plasmonic metal nanostructure assisted laser desorption ionization mass spectrometry. Chem Commun 54, 10905-10908 https://doi.org/10.1039/c8cc05793a
  27. Li Y, Luo P, Cao X et al (2019) Enhancing surface-assisted laser desorption ionization mass spectrometry performance by integrating plasmonic hot-electron transfer effect through surface modification. Chem Commun 55, 5769-5772 https://doi.org/10.1039/C9CC02541C
  28. Kim YK, Na HK, Kwack SJ et al (2011) Synergistic Effect of Graphene Oxide/MWCNT Films in Laser Desorption/Ionization Mass Spectrometry of Small Molecules and Tissue Imaging. ACS Nano 5, 4550-4561 https://doi.org/10.1021/nn200245v
  29. Kim YK and Min DH (2012) Fabrication of Alternating Multilayer Films of Graphene Oxide and Carbon Nanotube and Its Application in Mechanistic Study of Laser Desorption/Ionization of Small Molecules. ACS Appl Mater Interfaces 4, 2088-2095 https://doi.org/10.1021/am300054z
  30. Huang RC, Chiu WJ, Lai IPJ and Huang CC (2015) Multivalent Aptamer/Gold Nanoparticle-Modified Graphene Oxide for Mass Spectrometry-Based Tumor Tissue Imaging. Sci Rep 5, 10292 https://doi.org/10.1038/srep10292
  31. Qian K, Zhou L, Liu J et al (2013) Laser Engineered Graphene Paper for Mass Spectrometry Imaging. Sci Rep 3, 1415 https://doi.org/10.1038/srep01415
  32. Kim JY, Lim H, Lee SY et al (2019) Graphene-Coated Glass Substrate for Continuous Wave Laser Desorption and Atmospheric Pressure Mass Spectrometric Imaging of a Live Hippocampal Tissue. ACS Appl Mater Interfaces 11, 27153-27161 https://doi.org/10.1021/acsami.9b02620
  33. Goto-Inoue N, Hayasaka T, Zaima N et al (2010) The Detection of Glycosphingolipids in Brain Tissue Sections by Imaging Mass Spectrometry Using Gold Nanoparticles. J Am Soc Mass Spectrom 21, 1940-1943 https://doi.org/10.1016/j.jasms.2010.08.002
  34. Phan NTN, Mohammadi AS, Pour MD and Ewing AG (2016) Laser Desorption Ionization Mass Spectrometry Imaging of Drosophila Brain Using Matrix Sublimation versus Modification with Nanoparticles. Anal Chem 88, 1734-1741 https://doi.org/10.1021/acs.analchem.5b03942
  35. Hayasaka T, Goto-Inoue N, Zaima N et al (2010) Imaging Mass Spectrometry with Silver Nanoparticles Reveals the Distribution of Fatty Acids in Mouse Retinal Sections. J Am Soc Mass Spectrom 21, 1446-1454 https://doi.org/10.1016/j.jasms.2010.04.005
  36. Jackson SN, Baldwin K, Muller L et al (2014) Imaging of lipids in rat heart by MALDI-MS with silver nanoparticles. Anal Bioanal Chem 406, 1377-1386 https://doi.org/10.1007/s00216-013-7525-6
  37. Muller L, Kailas A, Jackson SN et al (2015) Lipid imaging within the normal rat kidney using silver nanoparticles by matrix-assisted laser desorption/ionization mass spectrometry. Kidney Int 88, 186-192 https://doi.org/10.1038/ki.2015.3
  38. Dufresne M, Thomas A, Breault-Turcot J, Masson JF and Chaurand P (2013) Silver-Assisted Laser Desorption Ionization For High Spatial Resolution Imaging Mass Spectrometry of Olefins from Thin Tissue Sections. Anal Chem 85, 3318-3324 https://doi.org/10.1021/ac3037415
  39. Cha S, song Z, Nikolau BJ and Yeung ES (2009) Direct Profiling and Imaging of Epicuticular Waxes on Arabidopsis thaliana by Laser Desorption/Ionization Mass Spectrometry Using Silver Colloid as a Matrix. Anal Chem 81, 2991-3000 https://doi.org/10.1021/ac802615r
  40. Jun JH, Song Z, Liu Z et al (2010) High-Spatial and High-Mass Resolution Imaging of Surface Metabolites of Arabidopsis thaliana by Laser Desorption-Ionization Mass Spectrometry Using Colloidal Silver. Anal Chem 82, 3255-3265 https://doi.org/10.1021/ac902990p
  41. Sunner J, Dratz E and Chen YC (1995) Graphite Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Peptides and Proteins from Liquid Solutions. Anal Chem 67, 4335-4342 https://doi.org/10.1021/ac00119a021
  42. Cha S and Yeung ES (2007) Colloidal Graphite-Assisted Laser Desorption/Ionization Mass Spectrometry and $MS^{n}$ of Small Molecules. 1. Imaging of Cerebrosides Directly from Rat Brain Tissue. Anal Chem 79, 2373-2385 https://doi.org/10.1021/ac062251h
  43. Zhang H, Cha S and Yeung ES (2007) Colloidal Graphite-Assisted Laser Desorption/Ionization MS and $MS^{n}$ of Small Molecules. 2. Direct Profiling and MS Imaging of Small Metabolites from Fruits. Anal Chem 79, 6575-6584 https://doi.org/10.1021/ac0706170
  44. Cha S, Zhang H, Iiarslan HI et al (2008) Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant J 55, 348-360 https://doi.org/10.1111/j.1365-313x.2008.03507.x
  45. Taira S, Sugiura Y, Moritake S, Shimma S, Ichiyanagi Y and Setou M (2008) Nanoparticle-Assisted Laser Desorption/Ionization Based Mass Imaging with Cellular Resolution. Anal Chem 80, 4761-4766 https://doi.org/10.1021/ac800081z
  46. Ageta H, Asai S, Sugiura Y, Goto-Inoue N, Zaima N and Setou M (2009) Layer-specific sulfatide localization in rat hippocampus middle molecular layer is revealed by nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Med Mol Morphol 42, 16-23 https://doi.org/10.1007/s00795-008-0427-6
  47. Shrivas K, Hayasaka T, Sugiura Y and Setou M (2011) Method for Simultaneous Imaging of Endogenous Low Molecular Weight Metabolites in Mouse Brain Using TiO2 Nanoparticles in Nanoparticle-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry. Anal Chem 83, 7283-7289 https://doi.org/10.1021/ac201602s
  48. McAlpin CR, Voorhees KJ, Corpuz AR and Richards RM (2012) Analysis of Lipids: Metal Oxide Laser Ionization Mass Spectrometry. Anal Chem 84, 7677-7683 https://doi.org/10.1021/ac300688u
  49. Voorhees KJ, McAlpin CR and Cox CR (2012) Lipid profiling using catalytic pyrolysis/metal oxide laser ionization- mass spectrometry. J Anal Appl Pyrol 98, 201-206 https://doi.org/10.1016/j.jaap.2012.07.004
  50. Voorhees KJ, Jensen KR, McAlpin CR et al (2013) Modified MALDI MS fatty acid profiling for bacterial identification. J Mass Spectrom 48, 850-855 https://doi.org/10.1002/jms.3215
  51. Basu SS, McMinn MH, Lopez BGC et al (2019) Metal Oxide Laser Ionization Mass Spectrometry Imaging (MOLI MSI) Using Cerium(IV) Oxide. Anal Chem 91, 6800-6807 https://doi.org/10.1021/acs.analchem.9b00894
  52. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 306, 471-473 https://doi.org/10.1126/science.1104404
  53. Wu C, Ifa DR, Manicke NE and Cooks RG (2009) Molecular imaging of adrenal gland by desorption electrospray ionization mass spectrometry. Analyst 135, 28-32 https://doi.org/10.1039/b919816d
  54. Eberlin LS, Dill AL, Costa AB et al (2010) Cholesterol Sulfate Imaging in Human Prostate Cancer Tissue by Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 82, 3430-3434 https://doi.org/10.1021/ac9029482
  55. Girod M, Shi Y, Cheng JX and Cooks RG (2011) Mapping Lipid Alterations in Traumatically Injured Rat Spinal Cord by Desorption Electrospray Ionization Imaging Mass Spectrometry. Anal Chem 83, 207-215 https://doi.org/10.1021/ac102264z
  56. Thunig J, Hansen SH and Janfelt C (2011) Analysis of Secondary Plant Metabolites by Indirect Desorption Electrospray Ionization Imaging Mass Spectrometry. Anal Chem 83, 3256-3259 https://doi.org/10.1021/ac2004967
  57. Eberlin LS, Ifa DR, Wu C and Cooks RG (2010) Three-Dimensional Vizualization of Mouse Brain by Lipid Analysis Using Ambient Ionization Mass Spectrometry. Angew Chem Int Ed 49, 873-876 https://doi.org/10.1002/anie.200906283
  58. Parrot D, Papazian S, Foil D, Tasdemir D (2017) Imaging the Unimaginable: Desorption Electrospray Ionization-Imaging Mass Spectrometry (DESI-MS) in Natural Product Research. Planta Med 84, 584-593 https://doi.org/10.1055/s-0044-100188
  59. Nemes P and Vertes A (2007) Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry. Anal Chem 79, 8098-8106 https://doi.org/10.1021/ac071181r
  60. Nemes P, Barton AA and Vertes A (2009) Three-Dimensional Imaging of Metabolites in Tissues under Ambient Conditions by Laser Ablation Electrospray Ionization Mass Spectrometry. Anal Chem 81, 6668-6675 https://doi.org/10.1021/ac900745e
  61. Nemes P, Woods AS and Vertes A (2010) Simultaneous Imaging of Small Metabolites and Lipids in Rat Brain Tissues at Atmospheric Pressure by Laser Ablation Electrospray Ionization Mass Spectrometry. Anal Chem 82, 982-988 https://doi.org/10.1021/ac902245p
  62. Shrestha B and Vertes A (2009) In Situ Metabolic Profiling of Single Cells by Laser Ablation Electrospray Ionization Mass Spectrometry. Anal Chem 81, 8265-8271 https://doi.org/10.1021/ac901525g
  63. Shrestha B, Patt JM and Vertes A (2011) In Situ Cellby-Cell Imaging and Analysis of Small Cell Populations by Mass Spectrometry. Anal Chem 83, 2947-2955 https://doi.org/10.1021/ac102958x
  64. Bletsos IV and Hercules DM (1985) Time-of-Flight Secondary Ion Mass Spectrometry of Nylons: Detection of High Mass Fragments. Anal Chem 57, 2384-2388 https://doi.org/10.1021/ac00289a049
  65. Niehuis E, Heller T, Feld H and Benninhoven A (1987) Design and performance of a reflectron based time-of-flight secondary ion mass spectrometer with electrodynamic primary ion mass separation. J Vac Sci Technol A 5, 1243-1246 https://doi.org/10.1116/1.574781
  66. Todd PJ, Schaaff TG, Chaurand P and Caprioli RM (2001) Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. J Mass Spectrom 36, 355-369 https://doi.org/10.1002/jms.153
  67. Weibel D, Wong S, Lockyer N, Blenkinsopp P, Hill R and Vickerman JC (2003) A C60 Primary Ion Beam System for Time of Flight Secondary Ion Mass Spectrometry: Its Development and Secondary Ion Yield Characteristics. Anal Chem 75, 1754-1764 https://doi.org/10.1021/ac026338o
  68. McDonnell LA and Heeren RMA (2007) IMAGING MASS SPECTROMETRY. Mass Spectrom Rev 26, 606-643 https://doi.org/10.1002/mas.20124
  69. Fletcher JS, Rabbani S, Henderson A, Lockyer NP and Vickerman JC (2011) Three-dimensional mass spectral imaging of HeLa-M cells-sample preparation, data interpretation and visualisation. Rapid Commun Mass Spectrom 25, 925-932 https://doi.org/10.1002/rcm.4944