DOI QR코드

DOI QR Code

Analysis of D2D Utility Function with the Interference Majorization

  • Oh, Changyoon (Dept. of Information and Communication Engineering, Inha Technical College)
  • Received : 2020.05.25
  • Accepted : 2020.07.13
  • Published : 2020.07.31

Abstract

We consider the D2D utility optimization problem in the cellular system. More specifically, we develop a concave function decision rule which reduces the complexity of non-convex optimization problem. Typically, utility function, which is a function of the signal and the interference, is non-convex. In this paper, we analyze the utility function from the interference perspective. We introduce the 'relative interference' and the 'interference majorization'. The relative interference captures the level of interference at D2D receiver's perspective. The interference majorization approximates the interference by applying the major interference. Accordingly, we propose a concave function decision rule, and the corresponding convex optimization solution. Simulation results show that the utility function is concave when the relative interference is less than 0.1, which is a typical D2D usage scenario. We also show that the proposed convex optimization solution can be applied for such relative interference cases.

셀룰라 시스템에서 D2D 유틸리티 최적화 문제를 연구하도록 한다. 구체적으로, Non-Convex 최적화 문제의 복잡도를 완화하도록 해주는 오목함수 결정규칙을 제안하고자 한다. 일반적으로, 유틸리티 함수는 신호와 간섭의 함수이며, 해법이 복잡한 Non-Convex 형태를 가진다. 본 논문에서는 간단한 해법을 찾고자 유틸리티 함수를 간섭관점에서 분석한다. 먼저 D2D 수신단에서의 간섭 레벨을 의미하는 '상대간섭'과 간섭을 주요간섭으로 간략화하는 '간섭주요화'를 수식적으로 정의한다. 정의한 간섭주요화를 바탕으로 간단한 해법의 기반이 되는 오목함수 결정규칙과 최적화 해법이 간단한 Convex Optimization 해법을 제안하도록 한다. 실험결과를 통하여 유틸리티 함수는 D2D 적용시나리오에 해당하는 수치인 상대간섭 0.1 이하에서는 오목함수임을 확인하였다. 또한, 제안하는 Convex Optimization 해법은 상대간섭 수치 0.1 이하에서 적용이 가능함을 확인하였다.

Keywords

References

  1. S. Selmi and R. Bouallegue, "Interference and power management algorithm for D2D communications underlay 5G cellular network," 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, pp. 1-8, 2019.
  2. C. Yang, J. Li, P. Semasinghe, E. Hossain, S. M. Perlaza and Z. Han, "Distributed Interference and Energy-Aware Power Control for Ultra-Dense D2D Networks: A Mean Field Game," in IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 1205-1217, Feb. 2017. https://doi.org/10.1109/TWC.2016.2641959
  3. N. Lee, X. Lin, J. Andrews, and R.W. Heath, "Power Control for D2D Underlaid Cellular Networks: Modeling, Algorithms and Analysis," IEEE Journal on Selected Areas in Communications, vol. 33, no. 1, pp 1-13, Jan. 2015. https://doi.org/10.1109/JSAC.2014.2369612
  4. L. Han, T. B. Iliev, G. Y. Mihaylov, E. P. Ivanova and I. S. Stoyanov, "Power control schemes for device-to-device communications in 5G mobile network," 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, pp. 416-419, 2017.
  5. J. F. Shi, M. Chen, Z. H. Yang, H. Xu and Y. Wang, "Power control and performance analysis for full-duplex relay-assisted D2D communication underlaying fifth generation cellular networks," in IET Communications, vol. 11, no. 18, pp. 2729-2734, 2017. https://doi.org/10.1049/iet-com.2017.0760
  6. L. Han, Y. Zhang, X. Zhang and J. Mu, "Power Control for Full-Duplex D2D Communications Underlaying Cellular Networks," in IEEE Access, vol. 7, pp. 111858-111865, 2019. https://doi.org/10.1109/access.2019.2934479
  7. A. Abdallah, M. M. Mansour and A. Chehab, "A Distance-Based Power Control Scheme for D2D Communications Using Stochastic Geometry," 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, pp. 1-6, 2017.
  8. Y.A. Al-Gumaei, N. Aslam, A.M. Al-Samman, T. Al-Hadhrami, K. Noordin, Y. Fazea, "Non-Cooperative Power Control Game in D2D Underlying Networks with Variant System Conditions," Electronics 8, no. 10, 1113, 2019. https://doi.org/10.3390/electronics8101113
  9. Y. Ma, D. I. Kim, Z. Wu, "Optimization of OFDMA-based cellular cognitive radio networks", IEEE Trans. Commun., vol. 58, no. 8, pp. 2265-2276, Aug. 2010. https://doi.org/10.1109/TCOMM.2010.08.080444
  10. S.-J. Kim, G. B. Giannakis, "Optimal resource allocation for MIMO ad hoc cognitive radio networks", IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3117-3131, May 2011. https://doi.org/10.1109/TIT.2011.2120270
  11. X. Kang, R. Zhang, M. Motani, "Price-based resource allocation for spectrum-sharing femtocell networks: A Stackelberg game approach", IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 538-549, Apr. 2012. https://doi.org/10.1109/JSAC.2012.120404
  12. Y. Liu, R. Wang, "Interference Constraint Pricing for D2D Networks," IEEE Transactions on Wireless Communications, Vol. 16, No. 1, pp. 475-486, January 2017. https://doi.org/10.1109/TWC.2016.2625255
  13. E. Chong, "An Introduction to Optimization," 4th Edition, Wiley, Jan. 2013.