Abstract
In this paper, we propose an scalable re-detection for correlation filter in visual tracking. In real world, there are lots of target disappearances and reappearances during tracking, thus failure detection and re-detection methods are needed. One of the important point for re-detection is that a searching area must be large enough to find the missing target. For robust visual tracking, we adopt kernelized correlation filter as a baseline. Correlation filters have been extensively studied for visual object tracking in recent years. However conventional correlation filters detect the target in the same size area with the trained filter which is only 2 to 3 times larger than the target. When the target is disappeared for a long time, we need to search a wide area to re-detect the target. Proposed algorithm can search the target in a scalable area, hence the searching area is expanded by 2% in every frame from the target loss. Four datasets are used for experiments and both qualitative and quantitative results are shown in this paper. Our algorithm succeed the target re-detection in challenging datasets while conventional correlation filter fails.
본 논문에서는 상관필터를 이용한 영상 추적에서 탐색 영역의 크기 조절이 가능한 재탐지 방법을 제안한다. 실제 장비를 통해 영상 추적 기능을 실행할 때에는 표적이 특정 물체에 가리고 다시 나타나는 일이 빈번하게 일어나는데, 따라서 표적의 소실 판단과 재탐지 방법이 필요하다. 본 알고리즘은 강인한 추적을 위해 커널 상관필터를 사용한다. 일반적인 상관필터를 활용한 영상 추적 알고리즘에서는 표적을 탐지하는 범위가 학습된 필터의 크기에 국한된다. 하지만 표적의 가림이 오랜 시간 지속될수록 표적의 위치는 예측된 위치에서 벗어날 가능성이 커지고, 따라서 충분히 큰 범위에서 표적의 탐색이 이루어져야 한다. 제안하는 방법은 매 프레임 2%씩 탐색 범위를 넓히며 재탐지를 시도하여 성공률을 높인다. 실험은 항공에서 촬영된 4가지 영상을 활용하였고, 제안한 알고리즘은 재탐지가 어려운 데이터셋에서도 성공적인 결과를 보였다.