DOI QR코드

DOI QR Code

Implementation of Multiple Sensor Data Fusion Algorithm for Fire Detection System

  • Park, Jung Kyu (Dept. of Computer Software Engineering, Changshin University) ;
  • Nam, Kihun (Dept. of Fire and Disaster Preventing Engineering, Changshin University)
  • Received : 2020.05.11
  • Accepted : 2020.07.10
  • Published : 2020.07.31

Abstract

In this paper, we propose a prototype design and implementation of a fire detection algorithm using multiple sensors. The proposed topic detection system determines fire by applying rules based on data from multiple sensors. The fire takes about 3 to 5 minutes, which is the optimal time for fire detection. This means that timely identification of potential fires is important for fire management. However, current fire detection devices are very vulnerable to false alarms because they rely on a single sensor to detect smoke or heat. Recently, with the development of IoT technology, it is possible to integrate multiple sensors into a fire detector. In addition, the fire detector has been developed with a smart technology that can communicate with other objects and perform programmed tasks. The prototype was produced with a success rate of 90% and a false alarm rate of 10% based on 10 actual experiments.

본 연구에서는 다중 센서를 사용하여 화재 감지를 수행하는 알고리즘을 제안하고 시스템을 구현하였다. 제안하는 알고리즘은 다중 센서의 데이터를 기반으로 규칙을 적용하여 화재를 판정한다. 화재 발생은 약 3~5분의 시간이 걸리며 이 시간은 화재 감지의 최적 시간이다. 이는 잠재적 화재 발생을 적시에 식별하는 것이 화재 관리에 중요하다는 것을 의미한다. 국내의 경우 화재 국가 법령에 따라 대부분 건물에 화재경보기 설비를 장착하고 있다. 그러나 현재 사용하는 화재 감지 장치는 연기나 열을 감지하는 하나의 센서에 의존하기 때문에 허위 경보에 매우 취약하다. 최근에는 IoT의 기술 발달로 화재 감지기에 여러 개의 센서를 통합할 수 있다. 또한, 화재 감지기는 다른 물체와 통신을 할 수 있으며 프로그램된 작업을 수행할 수 있는 스마트 기술이 개발되었다. 제작된 프로토타입은 10건의 실제 실험을 기준으로 90%의 성공률과 10%의 거짓 경보율을 기록했다.

Keywords

References

  1. A. K. Gupta, and R. Johari, "IOT based Electrical Device Surveillance and Control System," Proceedings of 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), pp. 1-5, 2019.
  2. M. A. L. Pena and I. M. Fernandez, "SAT-IoT: An Architectural Model for a High-Performance Fog/Edge/Cloud IoT Platform," Proceedings of 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 633-638, 2019.
  3. W. A. Jabbar et al., "Design and Fabrication of Smart Home With Internet of Things Enabled Automation System," in IEEE Access, vol. 7, pp. 144059-144074, Sep. 2019. DOI: 10.1109/ACCESS .2019.2942846.
  4. National Fire Agency, Fire Statiscal Yearbook, http://www.nfa.go.kr
  5. M. Ahrens, Home Structure Fire, http://www.nfa.go.kr (accessed Mar. 25, 2020)
  6. L. Rutimann, Reducing False Alarms (A Study of selected European Countries), Technical Report, Siemens Switzerland Ltd., Switzerland, pp. 1-10.
  7. N. Artim. An Introduction to Fire Detection, Alarm, and Automatic Fire Sprinklers. https://www.nedcc.org/free-resources/preservation-leaflets/3.-emergency-management/3.2-an-introduction-to-fire-detection,-alarm,-and-automatic-fire-sprinklers
  8. K. Gu, Z. Xia, J. Qiao and W. Lin, "Deep Dual-Channel Neural Network for Image-Based Smoke Detection," IEEE Transactions on Multimedia, Vol. 22, No. 2, pp. 311-323, Feb. 2020, DOI: 10.1109/TMM.2019.2929009.
  9. DFROBOT, Gravity: Analog Flame Sensor For Arduino, https://www.dfrobot.com/product-195.html
  10. T. D. Doiron, 20 Degrees Celsius--A Short History of the Standard Reference Temperature for Industrial Dimensional Measurements, https://www.nist.gov/publications/20-degrees-celsius-short-history-standard-reference-temperature-industrial-dimensional
  11. K. Chen, Y. Cheng, H. Bai, C. Mou and Y. Zhang, "Research on Image Fire Detection Based on Support Vector Machine," Proceedings of 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE), pp. 1-7, 2019.
  12. J. K. Park, Y. H. Roh, K. Nam, and H. Y. Seo, "Fire Detection Method Using IoT and Wireless Sensor Network," Journal of The Korea Society of Computer and Information, Vol. 24, No. 8, pp. 131-136, Aug. 2019. DOI: 10.9708/jksci.2019.24.08.131
  13. J. K. Park, and H. Seo, "ZigBee-Based Smart Fire Detector for Remote Monitoring and Control," International Journal of Advanced Science and Technology, Vol. 29, No. 3, pp. 10431-10441, 2020.
  14. Arduino. Arudio Uno, https://store.arduino.cc/usa/arduino-uno-rev3
  15. M. Alrashoud, E. Hazza, F. Alqahtani, M. Al-Hammadi, A. Abhari. and A. Ghoneim, "Cognitive and Hierarchical Fuzzy Inference System for Generating Next Release Planning in SaaS Applications," IEEE Access, Vol. 7, pp. 102966-102974, Jul. 2019. DOI: 10.1109/ACCESS.2019.2929214
  16. O. Sadio, I. Ngom, and C. Lishou, "Lightweight Security Scheme for MQTT/MQTT-SN Protocol," Proceedings of 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), pp. 119-123, 2019.