DOI QR코드

DOI QR Code

Dosimetric comparison of coplanar and non-coplanar volumetric-modulated arc therapy in head and neck cancer treated with radiotherapy

  • Gayen, Sanjib (Department of Radiation Oncology, All India Institute of Medical Sciences) ;
  • Kombathula, Sri Harsha (Department of Radiation Oncology, All India Institute of Medical Sciences) ;
  • Manna, Sumanta (Department of Radiation Oncology, All India Institute of Medical Sciences) ;
  • Varshney, Sonal (Department of Radiation Oncology, All India Institute of Medical Sciences) ;
  • Pareek, Puneet (Department of Radiation Oncology, All India Institute of Medical Sciences)
  • Received : 2020.03.19
  • Accepted : 2020.04.22
  • Published : 2020.06.30

Abstract

Purpose: To evaluate the dosimetric variations in patients of head and neck cancer treated with definitive or adjuvant radiotherapy using optimized non-coplanar (ncVMAT) beams with coplanar (cVMAT) beams using volumetric arc therapy. Materials and Methods: Twenty-two patients of head and neck cancer that had received radiotherapy using VMAT in our department were retrospectively analyzed. Each of the patients was planned using coplanar and non-coplanar orientations using an optimized couch angle and fluences. We analyzed the Conformity Index (CIRTOG), Dose Homogeneity Index (DHI), Heterogeneity Index (HIRTOG), low dose volume, target and organs-at-risk coverage in both the plans without changing planning optimization parameters. Results: The prescription dose ranged from 60 Gy to 70 Gy. Using ncVMAT, CIRTOG, DHI and HIRTOG, and tumor coverage (ID95%) had improved, low dose spillage volume in the body V5Gy was increased and V10Gy was reduced. Integral dose and intensity-modulated radiation therapy factor had increased in ncVMAT. In the case of non-coplanar beam arrangements, maximum dose (Dmax) of right and left humeral head were reduced significantly whereas apex of the right and left lung mean dose were increased. Conclusion: The use of ncVMAT produced better target coverage and sparing of the shoulder and soft tissue of the neck as well as the critical organ compared with the cVMAT in patients of head and neck malignancy.

Keywords

References

  1. Tuljapurkar V, Dhar H, Mishra A, Chakraborti S, Chaturvedi P, Pai PS. The Indian scenario of head and neck oncology: challenging the dogmas. South Asian J Cancer 2016;5:105-10. https://doi.org/10.4103/2278-330X.187573
  2. Mehrotra R, Singh M, Gupta RK, Singh M, Kapoor AK. Trends of prevalence and pathological spectrum of head and neck cancers in North India. Indian J Cancer 2005;42:89-93. https://doi.org/10.4103/0019-509X.16698
  3. Vanetti E, Clivio A, Nicolini G, et al. Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT. Radiother Oncol 2009;92:111-7. https://doi.org/10.1016/j.radonc.2008.12.008
  4. Verbakel WF, Cuijpers JP, Hoffmans D, Bieker M, Slotman BJ, Senan S. Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys 2009;74:252-9. https://doi.org/10.1016/j.ijrobp.2008.12.033
  5. Scorsetti M, Fogliata A, Castiglioni S, et al. Early clinical experience with volumetric modulated arc therapy in head and neck cancer patients. Radiat Oncol 2010;5:93. https://doi.org/10.1186/1748-717X-5-93
  6. Smet S, Lambrecht M, Vanstraelen B, Nuyts S. Clinical and dosimetric evaluation of RapidArc versus standard sliding window IMRT in the treatment of head and neck cancer. Strahlenther Onkol 2015;191:43-50. https://doi.org/10.1007/s00066-014-0742-x
  7. Fung-Kee-Fung SD, Hackett R, Hales L, Warren G, Singh AK. A prospective trial of volumetric intensity-modulated arc therapy vs conventional intensity modulated radiation therapy in advanced head and neck cancer. World J Clin Oncol 2012;3:57-62. https://doi.org/10.5306/wjco.v3.i4.57
  8. Wild E, Bangert M, Nill S, Oelfke U. Noncoplanar VMAT for nasopharyngeal tumors: plan quality versus treatment time. Med Phys 2015;42:2157-68. https://doi.org/10.1118/1.4914863
  9. Yu VY, Tran A, Nguyen D, et al. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery. Med Phys 2015;42:6457-67. https://doi.org/10.1118/1.4932631
  10. Bangert M, Oelfke U. Spherical cluster analysis for beam angle optimization in intensity-modulated radiation therapy treatment planning. Phys Med Biol 2010;55:6023-37. https://doi.org/10.1088/0031-9155/55/19/025
  11. Yang Y, Zhang P, Happersett L, et al. Choreographing couch and collimator in volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 2011;80:1238-47. https://doi.org/10.1016/j.ijrobp.2010.10.016
  12. Krayenbuehl J, Davis JB, Ciernik IF. Dynamic intensity-modulated non-coplanar arc radiotherapy (INCA) for head and neck cancer. Radiother Oncol 2006;81:151-7. https://doi.org/10.1016/j.radonc.2006.09.004
  13. Voet PW, Breedveld S, Dirkx ML, Levendag PC, Heijmen BJ. Integrated multicriterial optimization of beam angles and intensity profiles for coplanar and noncoplanar head and neck IMRT and implications for VMAT. Med Phys 2012;39:4858-65. https://doi.org/10.1118/1.4736803
  14. Brouwer CL, Steenbakkers RJ, Bourhis J, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiother Oncol 2015;117:83-90. https://doi.org/10.1016/j.radonc.2015.07.041
  15. Kataria T, Sharma K, Subramani V, Karrthick KP, Bisht SS. Homogeneity Index: an objective tool for assessment of conformal radiation treatments. J Med Phys 2012;37:207-13. https://doi.org/10.4103/0971-6203.103606
  16. Petrova D, Smickovska S, Lazarevska E. Conformity Index and Homogeneity Index of the postoperative whole breast radiotherapy. Open Access Maced J Med Sci 2017;5:736-9. https://doi.org/10.3889/oamjms.2017.161
  17. Cao T, Dai Z, Ding Z, Li W, Quan H. Analysis of different evaluation indexes for prostate stereotactic body radiation therapy plans: conformity index, homogeneity index and gradient index. Precis Radiat Oncol 2019;3:72-9. https://doi.org/10.1002/pro6.1072
  18. Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg 2006;105 Suppl:194-201. https://doi.org/10.3171/sup.2006.105.7.194
  19. Webb S. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac: conformality versus efficiency of dose delivery. Phys Med Biol 2000;45:1715-30. https://doi.org/10.1088/0031-9155/45/7/301
  20. Hauri P, Schneider U. Whole-body dose equivalent including neutrons is similar for 6 MV and 15 MV IMRT, VMAT, and 3D conformal radiotherapy. J Appl Clin Med Phys 2019;20:56-70. https://doi.org/10.1002/acm2.12543
  21. Chow JC, Wettlaufer B, Jiang R. Dosimetric effects on the penumbra region of irregular multi-leaf collimated fields. Phys Med Biol 2006;51:N31-8. https://doi.org/10.1088/0031-9155/51/3/N01
  22. Patel I, Glendinning AG, Kirby MC. Dosimetric characteristics of the Elekta Beam Modulator. Phys Med Biol 2005;50:5479-92. https://doi.org/10.1088/0031-9155/50/23/004
  23. Taylor ML, Kron T. Consideration of the radiation dose delivered away from the treatment field to patients in radiotherapy. J Med Phys 2011;36:59-71. https://doi.org/10.4103/0971-6203.79686
  24. Aoyama H, Westerly DC, Mackie TR, et al. Integral radiation dose to normal structures with conformal external beam radiation. Int J Radiat Oncol Biol Phys 2006;64:962-7. https://doi.org/10.1016/j.ijrobp.2005.11.005
  25. Slosarek K, Osewski W, Grzadziel A, et al. Integral dose: comparison between four techniques for prostate radiotherapy. Rep Pract Oncol Radiother 2014;20:99-103. https://doi.org/10.1016/j.rpor.2014.10.010
  26. Kathirvel M, Subramani V, Subramanian VS, Swamy ST, Arun G, Kala S. Dosimetric comparison of head and neck cancer patients planned with multivendor volumetric modulated arc therapy technology. J Cancer Res Ther 2017;13:122-30. https://doi.org/10.4103/0973-1482.203600
  27. Whitton A, Warde P, Sharpe M, et al. Organisational standards for the delivery of intensity-modulated radiation therapy in Ontario. Clin Oncol (R Coll Radiol) 2009;21:192-203. https://doi.org/10.1016/j.clon.2008.10.005
  28. Sheng K, Shepard DM, Orton CG. Noncoplanar beams improve dosimetry quality for extracranial intensity modulated radiotherapy and should be used more extensively. Med Phys 2015;42:531-3. https://doi.org/10.1118/1.4895981
  29. Dong P, Lee P, Ruan D, et al. $4\pi$ noncoplanar stereotactic body radiation therapy for centrally located or larger lung tumors. Int J Radiat Oncol Biol Phys 2013;86:407-13. https://doi.org/10.1016/j.ijrobp.2013.02.002
  30. Hirashima H, Nakamura M, Miyabe Y, et al. Quality assurance of non-coplanar, volumetric-modulated arc therapy employing a C-arm linear accelerator, featuring continuous patient couch rotation. Radiat Oncol 2019;14:62. https://doi.org/10.1186/s13014-019-1264-6
  31. Serre A, Idri K, Fenoglietto P, et al. Dosimetric comparison between coplanar and non coplanar field radiotherapy for ethmoid sinus cancer. Radiat Oncol 2007;2:35. https://doi.org/10.1186/1748-717X-2-35
  32. Lee TF, Ting HM, Chao PJ, Fang FM. Dual arc volumetric-modulated arc radiotherapy (VMAT) of nasopharyngeal carcinomas: a simultaneous integrated boost treatment plan comparison with intensity-modulated radiotherapies and single arc VMAT. Clin Oncol (R Coll Radiol) 2012;24:196-207. https://doi.org/10.1016/j.clon.2011.06.006
  33. Xia P, Verhey LJ. Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments. Med Phys 1998;25:1424-34. https://doi.org/10.1118/1.598315
  34. Nithya L, Raj NA, Kumar A, Rathinamuthu S, Pandey MB. Comparative analysis of volumetric-modulated arc therapy and intensity-modulated radiotherapy for base of tongue cancer. J Med Phys 2014;39:121-6. https://doi.org/10.4103/0971-6203.131288
  35. Zheng BM, Dong XX, Wu H, Duan YJ, Han SK, Sun Y. Dosimetry comparison between volumetric modulated arc therapy with RapidArc and fixed field dynamic IMRT for local-regionally advanced nasopharyngeal carcinoma. Chin J Cancer Res 2011;23:259-64. https://doi.org/10.1007/sl1670-011-0259-0
  36. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21:109-22. https://doi.org/10.1016/0360-3016(91)90171-Y
  37. Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 1995;31:1341-6. https://doi.org/10.1016/0360-3016(95)00060-C
  38. Lee S, Cao YJ, Kim CY. Physical and radiobiological evaluation of radiotherapy treatment plan. In : Nenoi M, editor. Evolution of ionizing radiation research Rijeka, Croatia: InTech; 2015, p. 109-50.
  39. Newbold KL, Bhide S, Convery H, Harrington KJ, Nutting CM. Prospective intra-patient evaluation of a shoulder retraction device for radiotherapy in head and neck cancer. Med Dosim 2012;37:293-5. https://doi.org/10.1016/j.meddos.2011.11.002
  40. Scarboro SB, Followill DS, Howell RM, Kry SF. Variations in photon energy spectra of a 6 MV beam and their impact on TLD response. Med Phys 2011;38:2619-28. https://doi.org/10.1118/1.3575419
  41. Edwards CR, Mountford PJ. Near surface photon energy spectra outside a 6 MV field edge. Phys Med Biol 2004;49:N293-301. https://doi.org/10.1088/0031-9155/49/18/N01
  42. Stovall M, Blackwell CR, Cundiff J, et al. Fetal dose from radiotherapy with photon beams: report of AAPM Radiation Therapy Committee Task Group No. 36. Med Phys 1995;22:63-82. https://doi.org/10.1118/1.597525
  43. Blais AR, Lederer E, Oliver M, Leszczynski K. Static and rotational step-and-shoot IMRT treatment plans for the prostate: a risk comparison study. Med Phys 2012;39:1069-78. https://doi.org/10.1118/1.3679338
  44. Petti PL, Chuang CF, Smith V, Larson DA. Peripheral doses in CyberKnife radiosurgery. Med Phys 2006;33:1770-9. https://doi.org/10.1118/1.2198173
  45. Ramsey C, Seibert R, Mahan SL, Desai D, Chase D. Out-of-field dosimetry measurements for a helical tomotherapy system. J Appl Clin Med Phys 2006;7:1-11.
  46. Kragl G, Baier F, Lutz S, et al. Flattening filter free beams in SBRT and IMRT: dosimetric assessment of peripheral doses. Z Med Phys 2011;21:91-101. https://doi.org/10.1016/j.zemedi.2010.07.003
  47. Fogliata A, Wang PM, Belosi F, et al. Assessment of a model based optimization engine for volumetric modulated arc therapy for patients with advanced hepatocellular cancer. Radiat Oncol 2014;9:236. https://doi.org/10.1186/s13014-014-0236-0

Cited by

  1. Dosimetric Comparison of Noncoplanar and Coplanar Volumetric Modulated Arc Therapy Plans for Esophageal Cancer vol.31, pp.4, 2020, https://doi.org/10.14316/pmp.2020.31.4.179
  2. Evaluation of the correlation between dosimetric, geometric, and technical parameters of radiosurgery planning for multiple brain metastases vol.22, pp.8, 2020, https://doi.org/10.1002/acm2.13326
  3. Dosimetric Evaluation of Low-Dose Spillage Volumes for Head and Neck Cancer Using Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy Treatment Techniques vol.32, pp.3, 2021, https://doi.org/10.14316/pmp.2021.32.3.70