DOI QR코드

DOI QR Code

Estimation of spatial autocorrelation variations of uncertain geotechnical properties for the frozen ground

  • Wang, Di (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Wang, Tao (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Xu, Daqing (Anhui Transport Consulting & Design Institute Co.,LTD) ;
  • Zhou, Guoqing (State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology)
  • 투고 : 2020.04.04
  • 심사 : 2020.07.21
  • 발행 : 2020.08.25

초록

The uncertain geotechnical properties of frozen soil are important evidence for the design, operation and maintenance of the frozen ground. The complex geological, environmental and physical effects can lead to the spatial variations of the frozen soil, and the uncertain mechanical properties are the key factors for the uncertain analysis of frozen soil engineering. In this study, the elastic modulus, strength and Poisson ratio of warm frozen soil were measured, and the statistical characteristics under different temperature conditions are obtained. The autocorrelation distance (ACD) and autocorrelation function (ACF) of uncertain mechanical properties are estimated by random field (RF) method. The results show that the mean elastic modulus and mean strength decrease with the increase of temperature while the mean Poisson ratio increases with the increase of temperature. The average values of the ACD for the elastic modulus, strength and Poisson ratio are 0.64m, 0.53m and 0.48m, respectively. The standard deviation of the ACD for the elastic modulus, strength and Poisson ratio are 0.03m, 0.07m and 0.03m, respectively. The ACFs of elastic modulus, strength and Poisson ratio decrease with the increase of ratio of local average distance and scale of fluctuation. The ACF of uncertain mechanical properties is different when the temperature is different. This study can improve our understanding of the spatial autocorrelation variations of uncertain geotechnical properties and provide a basis and reference for the uncertain settlement analysis of frozen soil foundation.

키워드

과제정보

This research was supported by the Graduate Education Project of China University of Mining and Technology (Grant No.2019YJSJG042), the National Natural Science Foundation of China (Grant No. 51604265), the China Postdoctoral Science Foundation funded project (Grant No. 2019M660134) and the Major State Basic Research Development Program (Grant No. 2012CB026103). The authors wish to thank two anonymous reviewers and editor for their comments and advice.

참고문헌

  1. Alhasan, A., Ali, A., Offenbacker, D., Smadi, O. and Lewis-Beck, C. (2018), "Incorporating spatial variability of pavement foundation layers stiffness in reliability-based mechanistic-empirical pavement performance prediction", Transport. Geotech., 17, 1-13. https://doi.org/10.1016/j.trgeo.2018.08.001.
  2. Chen, L., Yu, W.B., Yi, X., Hu, D. and Liu, W.B. (2018), "Numerical simulation of heat transfer of the crushed-rock interlayer embankment of Qinghai-Tibet Railway affected by aeolian sand clogging and climate change", Cold Reg. Sci. Technol., 155, 1-10. https://doi.org/10.1016/j.coldregions. 2018.07.009.
  3. Chenari, R.J., Fatahi, B., Ghoreishi, M. and Taleb, A. (2019), "Physical and numerical modelling of the inherent variability of shear strength in soil mechanics", Geomech. Eng., 17(1), 31-45. http://doi.org/10.12989/gae.2019.17.1.031.
  4. El Haj, A.K., Soubra, A.H. and Fajoui, J. (2019), "Probabilistic analysis of an offshore monopile foundation taking into account the soil spatial variability", Comput. Geotech., 106, 205-216. https://doi.org/ 10.1016/j.compgeo.2018.10.011.
  5. Elachachi, S. M., Breysse, D. and Denis, A. (2012), "The effects of soil spatial variability on the reliability of rigid buried pipes", Comput. Geotech., 43, 61-71. https://doi.org/10.1016/j.compgeo.2012.02. 008.
  6. Fang, J.H., Li, X., Liu, J.K., Liu, C.Y.N., Liu, Z.Y. and Ji, Y.J. (2018), "The crystallization and salt expansion characteristics of a silty clay", Cold Reg. Sci. Technol., 154, 63-73. https://doi.org/10.1016/j. coldregions.2018.06.009.
  7. Fei, S., Tan, X., Wang, X., Du, L. and Sun, Z. (2019), "Evaluation of soil spatial variability by micro-structure simulation", Geomech. Eng., 17(6), 565-572. https://doi.org/10.12989/ gae.2019.17.6.565.
  8. Ghiasi, V. and Moradi, M. (2018), "Assessment the effect of pile intervals on settlement and bending moment raft analysis of piled raft foundations", Geomech. Eng., 16(2), 187-194. https://doi.org/10.12989/gae.2018.16.2.187.
  9. Guellil, M. E., Harichane, Z., Berkane, H.D. and Sadouk, A. (2017), "Soil and structure uncertainty effects on the soil foundation structure dynamic response", Earthq. Struct., 12(2), 153-163. https://doi.org/10.12989/eas.2017.12.2.153.
  10. Hamidpour, S., Soltani, M. and Shabdin, M. (2017), "Probabilistic seismic assessment of structures considering soil uncertainties", Earthq. Struct., 12(2),165-175. https://doi.org/10.12989/eas.2017.12.2. 165.
  11. Ji, Y.K., Zhou, G.Q., Zhou, Y. and Vandeginste, V. (2019), "Frost heave in freezing soils: A quasi-static model for ice lens growth", Cold Reg. Sci. Technol., 158, 10-17. https://doi.org/10.1016/j.cold regions.2018.11.003.
  12. Khemis, A., Chaouche, A.H., Athmani, A. and Kong, F.T. (2016), "Uncertainty effects of soil and structural properties on the buckling of flexible pipes shallowly buried in Winkler foundation", Struct. Eng. Mech., 59(4), 739-759. http://doi.org/10.12989/sem.2016.59.4.739.
  13. Lai, Y.M., Li, J.B. and Li, Q.Z. (2012), "Study on damage statistical constitutive model and stochastic simulation for warm ice-rich frozen silt", Cold Reg. Sci. Technol., 71(2), 102-110. https://doi.org/10.1016/j.coldregions.2011.11.001.
  14. Lee, J., Jeong, S. and Lee, J.K. (2015). "3D analytical method for mat foundations considering coupled soil springs", Geomech. Eng., 8(6), 845-857. http://doi.org/10.12989/gae.2015.8.6.845.
  15. Leng W.M. (2000), Reliability Analysis and Design Theory of Foundation Engineering, Central South University Press, Changsha, China (in Chinese).
  16. Leung, Y.F. and Lo, M.K. (2018), "Probabilistic assessment of pile group response considering superstructure stiffness and three-dimensional soil spatial variability", Comput. Geotech., 103, 193-200.https://doi.org/10.1016/j.compgeo.2018.07.010.
  17. Li, A., Niu, F., Xia, C., Bao, C. and Zheng, H. (2019), "Water migration and deformation during freeze-thaw of crushed rock layer in Chinese high-speed railway subgrade: Large scale experiments", Cold Reg. Sci. Technol., 166, 102841. https://doi.org/10.1016/j.coldregions.2019.102841.
  18. Li, Q.L., Ling, X. Z., Hu, J.J. and Xu, X.T. (2018), "Experimental investigation on dilatancy behavior of frozen silty clay subjected to long-term cyclic loading", Cold Reg. Sci. Technol., 153, 156-163. https://doi.org/10.1016/j.coldregions.2018.05.008.
  19. Liu, W., Yu, W., Hu, D., Lu, Y., Chen, L., Yi, X. and Han, F. (2019a), "Crack damage investigation of paved highway embankment in the Tibetan Plateau permafrost environments", Cold Reg. Sci. Technol., 163, 78-86. https://doi.org/10.1016/j.coldregions.2019.05.003.
  20. Liu, Y., Hu, J., Xiao, H.W. and Chen, E.J. (2017), "Effects of material and drilling uncertainties on artificial ground freezing of cement-admixed soils", Can. Geotech. J., 54(12), 1659-1671. https://doi.org/ 10.1139/cgj-2016-0707.
  21. Liu, Z.Q., Yang, W.H. and Wei, J. (2014), "Analysis of random temperature field for freeway with wide subgrade in cold regions", Cold Reg. Sci. Technol., 106-107, 22-27. https://doi.org/10.1016/j.coldregions.2014.06.004.
  22. Liu, Z.Y, Liu, J.K., Li, X. and Fang, J.H. (2019b), "Experimental study on the volume and strength change of an unsaturated silty clay upon freezing", Cold Reg. Sci. Technol., 157, 1-12. https://doi.org/ 10.1016/j.coldregions.2018.09.008.
  23. Lu, G.L. (2015), "Experimental study on mechanical properties for warm frozen soils in permafrost regions", Master Dissertation, China University of Mining and Technology, Jiangsu, China (in Chinese).
  24. Luo, J., Niu, F., Wu, L., Lin, Z., Liu, M., Hou, Y. and Miao, Q. (2018), "Field experimental study on long-term cooling performance of sun-shaded embankments at the Qinghai-Tibet Railway, China", Cold Reg. Sci. Technol., 145, 14-20. https://doi.org/10.1016/j.coldregions.2017.09.010.
  25. Ming, F., Yu, Q.H. and Li, D.Q. (2018), "Investigation of embankment deformation mechanisms in permafrost regions", Transport. Geotech., 16, 21-28. https://doi.org/10.1016/j.trgeo.2018.06.003.
  26. Mouyeaux, A., Carvajal, C., Bressolette, P., Peyras, L., Breul, P. and Bacconnet, C. (2019), "Probabilistic analysis of pore water pressures of an earth dam using a random finite element approach based on field data", Eng. Geol., 259, 105190. https://doi.org/10.1016/ j.enggeo.2019.105190.
  27. Mu, Y., Ma, W., Li, G., Niu, F., Liu, Y. and Mao, Y. (2018), "Impacts of supra-permafrost water ponding and drainage on a railway embankment in continuous permafrost zone, the interior of the Qinghai-Tibet Plateau", Cold Reg. Sci. Technol., 154, 23-31. https://doi.org/10.1016/j.coldregions.2018.06. 007.
  28. Pan, Y.T., Liu, Y., Lee, F.H. and Phoon, K.K. (2019), "Analysis of cement-treated soil slab for deep excavation support-A rational approach", Geotechnique, 69(10), 888-905. http://doi.org/10.1680/ jgeot.18.P.002.
  29. Pan, Y.T., Liu, Y., Tyagi, A. Lee, F.H. and Li, D.Q. (2020), "Model-independent strength-reduction factor for effect of spatial variability on tunnel with improved soil surrounds", Geotechnique, 1-17. https://doi.org/10.1680/jgeot.19.P.056.
  30. Pan, Y.T., Liu, Y., Xiao, H.W., Lee, F.H. and Phoon, K.K. (2018), "Effect of spatial variability on short-and long-term behaviour of axially-loaded cement-admixed marine clay column", Comput. Geotech., 94, 150-168. http://doi.org/10.1016/j.compgeo.2017.09.006.
  31. Parinaz, J. and Ehsan, J. (2016), "Reliability sensitivities with fuzzy random uncertainties using genetic algorithm", Struct. Eng. Mech., 60(3), 413-431. http://doi.org/10.12989/sem.2016.60.3.413.
  32. Rosemary, F., Indraratne, S.P., Weerasooriya, R. and Mishra, U. (2017), "Exploring the spatial variability of soil properties in an Alfisol soil catena", Catena, 150, 53-61. https://doi.org/10.1016/j.catena.2016.10.017.
  33. Sadouki, A., Harichane, Z., Elachachi, S.M. and Erken, A. (2018), "Response of anisotropic porous layered media with uncertain soil parameters to shear body-and Love-waves", Earthq. Struct., 14(4), 313-322. https://doi.org/10.12989/eas.2018.14.4.313.
  34. Tang, L., Cong, S.Y., Geng, L., Ling, X.Z. and Gan, F. (2018), "The effect of freeze-thaw cycling on the mechanical properties of expansive soils", Cold Reg. Sci. Technol., 145, 197-207. https://doi.org/10.1016/j.coldregions.2017.10.004.
  35. Titi, H.H., Tabatabai, H., Faheem, A., Tutumluer, E. and Peters, J.P. (2018), "Spatial variability of compacted aggregate bases", Transport. Geotech., 17, 56-65. https://doi.org/10.1016/j.trgeo.2018.06.007.
  36. Vanmarcke, E. (2010), Random Fields: Analysis and Synthesis. MIT Press, Cambridge, U.K.
  37. Wang, C., Zhou, S., Wang, B. and Guo, P. (2018), "Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments", Geomech. Eng., 16(6), 589-597. https://doi.org/10.12989/gae.2018.16.6.589.
  38. Wang, S.H., Wang, Q.Z., Xu, J., Ding, J.L., Qi, J.L., Yang, Y.G. and Liu, F.Y. (2019), "Thaw consolidation behavior of frozen soft clay with calcium chloride", Geomech. Eng., 18(2),189-203. http://dx.doi.org/10.12989/gae.2019.18.2.189.
  39. Wang, T., Zhou, G., Wang, J. and Yin, L. (2018a), "Stochastic thermal-mechanical characteristics of frozen soil foundation for a transmission line tower in permafrost regions", Int. J. Geomech., 18(3), 06017025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001087.
  40. Wang, T., Zhou, G., Wang, J., Zhao, X. and Yin, L. (2018b), "Stochastic analysis for uncertain deformation of foundations in permafrost regions", Geomech. Eng., 14(6), 589-600. https://doi.org/10.12989/gae.2018.14.6.589.
  41. Wang, T., Zhou, G., Wang, J., Zhou, Y. and Chen, T. (2019b), "Stochastic coupling analysis of uncertain hydro-thermal properties for embankment in cold regions", Transport. Geotech., 21, 100275. https://doi.org/10.1016/j.trgeo.2019.100275.
  42. Wang, T., Zhou, G., Yin, L. and Zhou, L. (2019a), "Estimation on the influence of seepage on stochastic thermal regime of frozen ground surrounding the crude oil pipeline", Cold Reg. Sci. Technol., 157, 13-20. https://doi.org/10.1016/j.coldregions.2018.09.007.
  43. Wu, X.Y., Niu, F.J., Lin, Z.J., Luo, J., Zheng, H. and Shao, Z.J. (2018), "Delamination frost heave in embankment of high speed railway in high altitude and seasonal frozen region", Cold Reg. Sci. Technol., 153, 25 32.https://doi.org/10.1016/j.coldregions.2018.04.017.
  44. Yao, K., Xiao, H., Chen, D.H. and Liu, Y. (2019), "A direct assessment for the stiffness development of artificially cemented clay", Geotechnique, 69(8), 741-747. https://doi.org/10.1680/jgeot.18.t.010.
  45. Yi, J.T., Pan, Y.T., Huang, L.Y., Xu, S.J., Liu, Y. and Phoon, K.K. (2020), "Determination of limiting cavity depths for offshore spudcan foundations in a spatially varying seabed", Mar. Struct., 71, 102723. https://doi.org/10.1016/j.marstruc.2020.102723
  46. Yu, Q., Mu, Y., Yuan, C., Ma, W. and Pan, X. (2019), "The cold accumulative effect of expressway embankment with a combined cooling measure in permafrost zones", Cold Reg. Sci. Technol., 163, 59-67. https://doi.org/10.1016/j.coldregions.2019.04.009.
  47. Zhang, Y., Cheng, Z. and Lv, H. (2019), "Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions", Geomech. Eng., 18(1), 97-109. https://doi.org/10.12989/gae.2019.18.1.097.
  48. Zhou, Z., Yang, H., Xing, K. and Gao, W.Y. (2018), "Prediction models of the shear modulus of normal or frozen soil-rock mixtures", Geomech. Eng., 15(2), 775-781. http://doi.org/10.12989/gae.2018.15.2.783.