DOI QR코드

DOI QR Code

Optimal design of stone columns reinforced soft clay foundation considering design robustness

  • Yu, Yang (Ocean College, Zhejiang University) ;
  • Wang, Zhu (Ocean College, Zhejiang University) ;
  • Sun, HongYue (Ocean College, Zhejiang University)
  • Received : 2019.12.02
  • Accepted : 2020.07.10
  • Published : 2020.08.25

Abstract

Stone columns are widely used to treat soft clay ground. Optimizing the design of stone columns based on cost-effectiveness is always an attractive subject in the practice of ground treatment. In this paper, the design of stone columns is optimized using the concept of robust geotechnical design. Standard deviation of failure probability, which is a system response of concern of the stone column-reinforced foundation, is used as a measure of the design robustness due to the uncertainty in the coefficient of variation (COV) of the noise factors in practice. The failure probability of a stone column-reinforced foundation can be readily determined using Monte Carlo simulation (MCS) based on the settlements of the stone column-reinforced foundation, which are evaluated by a deterministic method. A framework based on the concept of robust geotechnical design is proposed for determining the most preferred design of stone columns considering multiple objectives including safety, cost and design robustness. This framework is illustrated with an example, a stone column-reinforced foundation under embankment loading. Based on the outcome of this study, the most preferred design of stone columns is obtained.

Keywords

Acknowledgement

The authors wish to acknowledge the financial support of the National Natural Science Foundation of China (41807224) and the Natural Science Foundation of Zhejiang Province (LQ17D020001). The first author wishes to thank Dr. C. Hsein Juang for his kindly help on the research of robust geotechnical design.

References

  1. Ambily, A.P. and Gandhi, S.R. (2007), "Behavior of stone columns based on experimental and FEM analysis", J. Geotech. Geoenviron. Eng., 133(4), 405-415. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405).
  2. Ang, A.H. and Tang, W.H. (2004), Probability Concepts in Engineering, 2nd Edition, Wiley, New York, U.S.A.
  3. Black, J.A., Sivakumar. V. and Bell. A. (2011), "The settlement performance of stone column foundations", Geotechnique, 61(11), 909-922. https://doi.org/10.1680/geot.9.p.014.
  4. Castro, J. (2017), "Groups of encased stone columns: Influence of column length and arrangement", Geotext. Geomembranes, 45(2), 68-80. https://doi.org/10.1016/j.geotexmem.2016.12.001.
  5. Chen, R.P., Chen, Y.M., Han, J. and Xu, Z.Z. (2008), "A theoretical solution for pile-supported embankments on soft soils under one-dimensional compression", Can. Geotech. J., 45(5), 611-623. https://doi.org/10.1139/t08-003.
  6. Dash, K.S. and Bora, M.C. (2013), "Improved performance of soft clay foundations using stone columns and geocell-sand mattress", Geotext. Geomembranes, 41, 26-35. https://doi.org/10.1016/j.geotexmem.2013.09.001.
  7. Deb, K. and Gupta, S. (2011), "Understanding knee points in bicriteria problems and their implications as preferred solution principles", Eng. Optimiz., 43(11), 1175-1204. https://doi.org/10.1080/0305215x.2010.548863.
  8. Deb, K., Dhar, A. and Bhagat. P. (2012), "Evolutionary approach for optimal stability analysis of geosynthetic-reinforced stone column-supported embankments on clay", KSCE J. Civ. Eng., 16(7), 1185-1192. https://doi.org/10.1007/s12205-012-1797-9.
  9. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE. T. Evolut. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017.
  10. Demir, A. and Sarici, T. (2017), "Bearing capacity of footing supported by geogrid encased stone columns on soft soil", Geomech. Eng., 12(3), 417-439. https://doi.org/10.12989/gae.2017.12.3.417.
  11. Deng, J., Yue, Z.Q., Tham, L.G. and Zhu, H.H. (2003), "Pillar design by combining finite element methods, neural networks and reliability: A case study of the Feng Huangshan copper mine, China", Int. J. Rock Mech. Min. Sci., 40(4), 585-599. https://doi.org/10.1016/s1365-1609(03)00042-x.
  12. Duncan, J.M. (2000), "Factors of safety and reliability in geotechnical engineering", J. Geotech. Geoenviron. Eng., 126(4), 307-316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307).
  13. Etezad, M., Hanna, A.M. and Khalifa, M. (2018), "Bearing capacity of a group of stone columns in soft soil subjected to local or punching shear failures", Int. J. Geomech., 18(12), 04018169. https://doi.org/10.1061/(asce)gm.1943-5622.0001300.
  14. GB 50007 (2011), Code for design of building foundations, Ministry of Housing and Urban-Rural Development, China.
  15. Gong, W., Huang, H., Juang, C.H. and Wang, L. (2017), "Simplified-robust geotechnical design of soldier pile-anchor tieback shoring system for deep excavation", Mar. Georesour. Geotech., 35(2), 157-169. https://doi.org/10.1080/1064119x.2015.1120369.
  16. Gong, W., Juang, C.H., Khoshnevisan, S. and Phoon, K.K. (2016), "R-LRFD: Load and resistance factor design considering robustness", Comput. Geotech., 74, 74-87. https://doi.org/10.1016/j.compgeo.2015.12.017.
  17. JGJ 79 (2012), Technical code for ground treatment of buildings, Ministry of Housing and Urban-Rural Development, China.
  18. Jimenez, R. and Sitar, N. (2009), "The importance of distribution types on finite element analyses of foundation settlement", Comput. Geotech., 36(3), 474-483. https://doi.org/10.1016/j.compgeo.2008.05.003.
  19. Juang, C.H. and Wang. L. (2013), "Reliability-based robust geotechnical design of spread foundations using multi-objective genetic algorithm", Comput. Geotech., 48, 96-106. https://doi.org/10.1016/j.compgeo.2012.10.003.
  20. Juang, C.H., Wang, L., Hsieh, H.S. and Atamturktur. S. (2014), "Robust geotechnical design of braced excavations in clays", Struct. Saf., 49, 37-44. https://doi.org/10.1016/j.strusafe.2013.05.003.
  21. Juang, C.H., Wang, L., Khoshnevisan, S. and Atamturktur S. (2013a), "Robust geotechnical design: Methodology and applications", J. Geoeng., 8(3), 61-70.
  22. Juang, C.H., Wang, L., Liu, Z.F., Ravichandran, N., Huang, H.W. and Zhang, J. (2013b), "Robust geotechnical design of drilled shafts in sand: new design perspective", J. Geotech. Geoenviron. Eng., 139(12), 2007-2019. https://doi.org/10.1061/(asce)gt.1943-5606.0000956.
  23. Keykhosropur, L., Soroush, A. and Imam, R. (2012), "3D numerical analyses of geosynthetic encased stone columns", Geotext. Geomembranes, 35, 61-68. https://doi.org/10.1016/j.geotexmem.2012.07.005.
  24. Khoshnevisan, S., Gong, W., Wang, L. and Juang, C.H. (2014), "Robust design in geotechnical engineering-an update", Georisk, 8(4), 217-234. https://doi.org/10.1080/17499518.2014.980274.
  25. Liu, W. and Hutchinson, T.C. (2018), "Numerical investigation of stone columns as a method for improving the performance of rocking foundation systems", Soil Dyn. Earthq. Eng., 106, 60-69. https://doi.org/10.1016/j.soildyn.2017.10.015.
  26. Lu, M.M., Xie, K.K. and Guo, B. (2010), "Consolidation theory for a composite foundation considering radial and vertical flows within the column and the variation of soil permeability within the disturbed soil zone", Can. Geotech. J., 47(2), 207-217. https://doi.org/10.1139/t09-086.
  27. Lu, Q., Xiao, Z.P., Ji, J. and Zheng, J. (2017), "Moving least squares method for reliability assessment of rock tunnel excavation considering ground-support interaction", Comput. Geotech., 84, 88-100. https://doi.org/10.1016/j.compgeo.2016.11.019.
  28. Madun, A., Meghzili, S.A., Tajudin, S.A.A., Yusof, M.F., Zainalabidin, M.H., Al-Gheethi, A.A., Dan, M.M. and Ismail, M.A.M. (2018), "Mathematical solution of the stone column effect on the load bearing capacity and settlement using numerical analysis", J. Phys. Conf. Ser., 995, 012036. https://doi.org/10.1088/1742-6596/995/1/012036.
  29. Miranda, M., Costa, A.D., Castro, J. and Sagaseta, C. (2015), "Influence of gravel density in the behaviour of soft soils improved with stone columns", Can. Geotech. J., 52(12), 1968-1980. https://doi.org/10.1139/cgj-2014-0487.
  30. Phoon, K. and Kulhawy, F.H. (1999), "Characterization of geotechnical variability", Can. Geotech. J., 36(4), 612-624. https://doi.org/10.1139/t99-038.
  31. Sun, W.W. (2005), "Study of settlement computation method of gravel pile composite foundation under embankment load", Ph.D. Dissertation, Nanjing Forestry University, Nanjing, China.
  32. Wang, L., Hwang, J.H., Juang, C.H. and Atamturktur. S. (2013), "Reliability-based design of rock slopes - A new perspective on design robustness", Eng. Geol., 154, 56-63. https://doi.org/10.1016/j.enggeo.2012.12.004.
  33. Xie, K.H., Lu, M.M. and Liu, G.B. (2009), "Equal strain consolidation for stone columns reinforced foundation", Int. J. Numer. Anal. Met., 33(15), 1721-1735. https://doi.org/10.1002/nag.790.
  34. Xu, C.J., Wang, L., Tien, Y.M., Chen, J.M. and Juang, C.H. (2014), "Robust design of rock slopes with multiple failure modes: modeling uncertainty of estimated parameter statistics with fuzzy number", Environ. Earth Sci., 72(8), 2957-2969. https://doi.org/10.1007/s12665-014-3201-1.
  35. Yu, Y., Shen, M.F. and Juang, C.H. (2019b), "Assessing initial stiffness models for laterally loaded piles in undrained clay: Robust design perspective", J. Geotech. Geoenviron. Eng., 145(10), 4019073. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002074.
  36. Yu, Y., Shen, M.F., Sun, H.Y. and Shang, Y.Q. (2019a), "Robust design of siphon drainage method for stabilizing rainfallinduced landslides", Eng. Geol., 249, 186-197. https://doi.org/10.1016/j.enggeo.2019.01.001.
  37. Zhang, J., Wang, H., Huang, H.W. and Chen, L.H. (2017), "System reliability analysis of soil slopes stabilized with piles", Eng. Geol., 229, 45-52. https://doi.org/10.1016/j.enggeo.2017.09.009.
  38. Zhang, L., Zhao, M.H., Shi. C.J. and Zhao, H. (2013), "Settlement calculation of composite foundation reinforced with stone columns", Int. J. Geomech., 13(3), 248-256. https://doi.org/10.1061/(asce)gm.1943-5622.0000212.
  39. Zhang, T.Q. (1992), "Study on stress-strain relationship of cement soil and failure characteristics of mixing pile", Ph.D. Dissertation; Zhejiang University, Hangzhou, China (in Chinese).
  40. Zheng, J.J., Liu, Y., Pan, Y.T. and Hu, J. (2018), "Statistical evaluation of the load-settlement response of a multicolumn composite foundation", J. Geotech. Geoenviron. Eng., 18(4), 04018015. https://doi.org/10.1061/(asce)gm.1943-5622.0001124.
  41. Zhou, Y., Kong, G.Q., Peng, H.F., Li, C.H. and Qin, H.Y. (2019), "Visualization of bulging development of geosynthetic-encased stone column", Geomech. Eng., 18(3), 329-337 https://doi.org/10.12989/gae.2019.18.3.329.