DOI QR코드

DOI QR Code

Solution for surrounding rock of strain-softening considering confining pressure-dependent Young's modulus and nonlinear dilatancy

  • Liang, Peng (Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing) ;
  • Gao, Yongtao (Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing) ;
  • Zhou, Yu (Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing) ;
  • Zhu, Chun (School of Earth Science and Engineering, Hohai University) ;
  • Sun, Yanhua (School of Civil Engineering, Guizhou University of Engineering Science)
  • Received : 2020.05.18
  • Accepted : 2020.07.08
  • Published : 2020.08.25

Abstract

This paper presents an elastic-plastic solution for the circular tunnel of elastic-strain softening behavior considering the pressure-dependent Young's modulus and the nonlinear dilatancy. The proposed solution is verified by the results of the field measuring and numerical simulation from a practical project, and a published closed-form analysis solution. The influence of each factor is discussed in detail, and the ability of Young's modulus and dilatancy characterizing the mechanical response of surrounding rock is investigated. It is found that, in low levels of support pressure, adopting the constant Young's modulus model will seriously misestimate the surrounding rock deformation. Using the constant dilatancy model will underestimate the surrounding rock deformation. When adopting the constant dilatancy model, as the dilation angle increases, the range of the plastic region increases, and the surrounding rock deformation weakens. When adopting the nonlinear dilatancy, the plastic region range and the surrounding rock deformation are the largest. The surrounding rock deformation using pressure-dependent Young's modulus model is between those resulted from two constant Young's modulus models. The constant α of pressuredependent Young's modulus model is the main factor affecting the tunnel displacement. The influence of α using a constant dilatancy model is much more apparent than that using a nonlinear dilatancy model.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (Grant No. 51504016) and Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-18-016A3) and Technology top talent support project of Guizhou Provincial Education Department ([2017]098).

References

  1. Agar, J.G., Morgenstern, N.R. and Scott, J.D. (1987), "Shear strength and stress-strain behavior of Athabasca oil sand at elevated temperatures and pressures", Can. Geotech. J., 24(1), 1-10. https://doi.org/10.1139/t87-001.
  2. Alejano, L.R. and Alonso, E. (2005), "Considerations of the dilatancy angle in rocks and rock masses", Int. J. Rock Mech. Min. Sci., 42(4), 481-507. https://doi.org/10.1016/j.ijrmms.2005.01.003.
  3. Alejano, L.R., Alfonso, R.D. and Veiga, M. (2012), "Plastic radii and longitudinal deformation profles of tunnels excavated in strain-softening rock masses", Tunn. Undergr. Sp. Technol., 30, 169-182. https://doi.org/10.1016/j.tust.2012.02.017.
  4. Alonso, E., Alejano, L.R., Varas, F., Fdez-Manin, G. and Carranza-Torres, C. (2003), "Ground response curves for rock masses exhibiting strain-softening behaviour", Int. J. Numer. Anal. Meth. Geomech., 27(13), 1153-1185. https://doi.org/10.1002/nag.315.
  5. Brown, E.T., Bray, J.W. and Santarelli, F.J. (1989), "Influence of stress-dependent elastic moduli on stresses and strains around axisymmetric boreholes", Rock Mech. Rock Eng., 22(3), 189-203. https://doi.org/10.1007/BF01470986.
  6. Brown, E.T., Bray, J.W., Ladanyi, B. and Hoek, E. (1983), "Ground response curves for rock tunnels", J. Geotech. Eng., 109(1), 15-39. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:1(15).
  7. Carranza-Torres, C. and Fairhurst, C. (1999), "The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 36(6), 777-809. https://doi.org/10.1016/S0148-9062(99)00047-9.
  8. Carranza-Torres, C. and Fairhurst, C. (2000), "Application of the convergence-confnement method of tunnel design to rock masses that satisfy the hoek-brown failure criterion", Tunn. Undergr. Sp. Technol., 15(2), 187-213. https://doi.org/10.1016/S0886-7798(00)00046-8.
  9. Chen, S.J., Yin, D.W., Jiang, N., Wang, F. and Zhao, Z.H. (2019), "Mechanical properties of oil shale-coal composite samples", Int. J. Rock Mech. Min. Sci., 123, 104120. https://doi.org/10.1016/j.ijrmms.2019.104120.
  10. Cui, L., Sheng, Q., Zheng, J.J., Cui, Z., Wang, A. and Shen, Q. (2019), "Regression model for predicting tunnel strain in strain-softening rock mass for underground openings", Int. J. Rock Mech. Min. Sci., 119, 81-97. https://doi.org/10.1016/j.ijrmms.2019.04.014.
  11. Cui, L., Zheng, J.J., Dong, Y.K., Zhang, B. and Wang, A. (2017), "Prediction of critical strains and critical support pressures for circular tunnel excavated in strain-softening rock mass", Eng. Geol., 224, 43-61. https://doi.org/10.1016/j.enggeo.2017.04.022.
  12. Cui, L., Zheng, J.J., Zhang, R.J. and Dong, Y.K. (2015), "Elasto-plastic analysis of a circular opening in rock mass with confining stress-dependent strain-softening behaviour", Tunn. Undergr. Sp. Technol., 50, 94-108. https://doi.org/10.1016/j.tust.2015.07.001.
  13. Detournay, E. (1986), "Elasto-plastic model of a deep tunnel for a rock with variable dilatancy", Rock Mech. Rock Eng., 19(2), 99-108. https://doi.org/10.1007/BF01042527.
  14. Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2015), "The ground response curve of underwater tunnels, excavated in a strain-softening rock mass", Geomech. Eng., 8(3), 323-359. https://doi.org/10.12989/gae.2015.8.3.323.
  15. Feng, G., Kang, Y., Wang, X.C., Hu, Y.Q. and Li, X.H. (2020a), "Investigation on the failure characteristics and fracture classification of shale under brazilian test conditions", Rock Mech. Rock Eng., 53, 3325-3340. https://doi.org/10.1007/s00603-020-02110-6.
  16. Feng, G., Wang, X.C., Wang, M. and Kang, Y. (2020b), "Experimental investigation of thermal cycling effect on fracture characteristics of granite in a geothermal-energy reservoir", Eng. Fract. Mech., 107180. https://doi.org/10.1016/j.engfracmech.2020.107180.
  17. Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 34, 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
  18. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 edition", Proceedings of the 5th North American Rock Mechanics Symposium, Toronto, Ontario, Canada.
  19. Huang, H., Babadagli, T., Chen, X., Li, H.Z. and Zhang, Y.M. (2020), "Performance comparison of novel chemical agents for mitigating water-blocking problem in tight gas sandstones", SPE. Reserv. Eval. Eng., 1-9. https://doi.org/10.2118/199282-PA.
  20. Jiang, N., Wang, C.X., Pan, H.Y., Yin, D.W. and Ma, J.B. (2020), "Modeling study on the influence of the strip filling mining sequence on mining-induced failure", Energy Sci. Eng., 8(6), 2239-2255. https://doi.org/10.1002/ese3.660.
  21. Kaliszky, S. (1989), Plasticity: Theory and Engineering Applications, Elsevier, Amsterdam, The Netherlands.
  22. Kulhawy, F.H. (1975), "Stress deformation properties of rock and rock discontinuities", Eng. Geol., 9(4), 327-350. https://doi.org/10.1016/0013-7952(75)90014-9.
  23. Lee, Y.K. and Pietruszczak, S. (2008), "A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass", Tunn. Undergr. Sp. Technol., 23(5), 588-599. https://doi.org/10.1016/j.tust.2007.11.002.
  24. Li, Y., Cao, S., Fantuzzi, N. and Liu, Y. (2015), "Elasto-plastic analysis of a circular borehole in elastic-strain softening coal seams", Int. J. Rock Mech. Min. Sci., 100(80), 316-324. https://doi.org/10.1016/j.ijrmms.2015.10.002.
  25. Nawrocki, P.A. and Dusseault, M.B. (1995), "Modelling of damaged zones around openings using radius-dependent Young's modulus", Rock Mech. Rock Eng., 28(4), 227-239. https://doi.org/10.1007/BF01020228.
  26. Park, K.H., Tontavanich, B. and Lee, J.G. (2008), "A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses", Tunn. Undergr. Sp. Technol., 23(2), 151-159. https://doi.org/10.1016/j.tust.2007.03.002.
  27. Ren, D.Z., Zhou, D.S., Liu, D.K., Dong, F.J., Ma, S.W. and Huang, H. (2019), "Formation mechanism of the upper triassic Yanchang formation tight sandstone reservoir in Ordos basin- Take Chang 6 reservoir in Jiyuan oil field as an example", J. Petrol. Sci. Eng., 178, 497-505. https://doi.org/10.1016/j.petrol.2019.03.021.
  28. Ren, F.Q., Zhu, C. and He, M.C. (2020), "Moment tensor analysis of acoustic emissions for cracking mechanisms during schist strain burst", Rock Mech. Rock Eng., 53(1), 153-170. https://doi.org/10.1007/s00603-019-01897-3.
  29. Santarelli, F.J. (1987), "Theoretical and experimental investigation of the stability of the axisymmetric borehole", Ph.D. Dissertation, University of London, London, U.K.
  30. Shan, P.F. and Lai, X.P. (2020), "An associated evaluation methodology of initial stress level of coal-rock masses in steeply inclined coal seams, Urumchi coal field, China", Eng. Comput., 37(6), 2177-2192. https://doi.org/10.1108/EC-07-2019-0325.
  31. Sharan, S.K. (2008), "Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek-brown rock", Int. J. Rock Mech. Min. Sci., 45(1), 78-85. https://doi.org/10.1016/j.ijrmms.2007.03.002.
  32. Shi, G.C., Yang, X.J., Yu, H.C. and Zhu, C. (2018), "Acoustic emission characteristics of creep fracture evolution in double-fracture fine sandstone under uniaxial compression", Eng. Fract. Mech., 210, 13-28. https://doi.org/10.1016/j.engfracmech.2018.09.004.
  33. Tao, Z.G., Wang, Y., Zhu, C., Xu, H.X., Li, G. and He, M.C. (2019), "Mechanical evolution of constant resistance and large deformation anchor cables and their application in landslide monitoring", B. Eng. Geol. Environ., 78, 4787-4803. https://doi.org/10.1007/s10064-018-01446-2.
  34. Timoshenko, S.P. and Goodier, J.N. (1982), Theory of Elasticity, McGraw-Hill Book Co.
  35. Walton, G., Hedayat, A. and Rahjoo, M. (2019), "Relating plastic potential function to experimentally obtained dilatancy observations for geomaterials with a confinement-dependent dilation angle", Int. J. Geomech., 19(8). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001484.
  36. Wang, C.X., Shen, B.T., Chen, J.T., Tong, W.X., Jiang, Z., Liu, Y. and Li, Y.Y. (2020b), "Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation", Geomech. Eng., 20(6), 485-495. https://doi.org/10.12989/gae.2020.20.6.485.
  37. Wang, F.Y. and Qian, D.L. (2018), "Difference solution for a circular tunnel excavated in strain-softening rock mass considering decayed confinement", Tunn. Undergr. Sp. Technol., 82, 66-81. https://doi.org/10.1016/j.tust.2018.08.001.
  38. Wang, J., Ning, J.G., Qiu, P.Q., Yang, S. and Shang, H.F. (2019), "Microseismic monitoring and its precursory parameter of hard roof collapse in longwall faces: A case study", Geomech. Eng., 17(4), 375-383. https://doi.org/10.12989/gae.2019.17.4.375.
  39. Wang, X., Yuan, W., Yan, Y.T. and Zhang, X. (2020a), "Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code", Geomech. Eng., 21(3), 259-268. https://doi.org/10.12989/gae.2020.21.3.259.
  40. Yin, Q., Ma, G.W., Jing, H.W., Wang, H.D., Su, H.J., Wang, Y.C. and Liu, R.C. (2017), "Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study", J. Hydrol., 555, 169-184. https://doi.org/10.1016/j.jhydrol.2017.10.019.
  41. You, M.Q. (2003), "Effect of confining pressure on the Young's modulus of rock specimen and the friction in fissures", Rock Soil Mech., S2, 167-170. https://doi.org/10.16285/j.rsm.2003.s2.038.
  42. Yuan, S.C. and Harrison, J. (2004), "An empirical dilatancy index for the dilatant deformation of rock", Int. J. Rock Mech. Min. Sci., 41(4), 679-686. https://doi.org/10.1016/j.ijrmms.2003.11.001.
  43. Zhang, C.G., Zhao, J.H., Zhang, Q.H. and Hu, X.D. (2012a), "A new closed-form solution for circular openings modeled by the unified strength theory and radius-dependent Young's modulus", Comput. Geotech., 42, 118-128. https://doi.org/10.1016/j.compgeo.2012.01.005.
  44. Zhang, N., Liu, W., Zhang, Y., Shan, P.F. and Shi, X.L. (2020a), "Microscopic pore structure of surrounding rock for underground strategic petroleum reserve (SPR) caverns in bedded rock salt", Energies, 13(7), 1565. https://doi.org/10.3390/en13071565.
  45. Zhang, Q., Jiang, B.S., Wu, X.S., Zhang, H.Q. and Han, L.J. (2012b), "Elasto-plastic coupling analysis of circular openings in elasto-brittle-plastic rock mass", Theor. Appl. Fract. Mech., 60(1), 60-67. https://doi.org/10.1016/j.tafmec.2012.06.008.
  46. Zhang, Q., Zhang, C.H., Jiang, B.S., Li, N. and Wang, Y.C. (2018), "Elastoplastic coupling solution of circular openings in strain-softening rock mass considering pressure-dependent effect", Int. J. Geomech., 18(1), 04017132. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001043.
  47. Zhang, Y., Cao, S.G., Zhang, N. and Zhao, C.Z. (2020b), "The application of short-wall block backfill mining to preserve surface water resources in northwest China", J. Cleaner Prod., 261, 121232. https://doi.org/10.1016/j.jclepro.2020.121232.
  48. Zhao, X.G. and Cai, M. (2010a), "A mobilized dilation angle model for rocks", Int. J. Rock Mech. Min. Sci., 47(3), 368-384. https://doi.org/10.1016/j. ijrmms.2009.12.007.
  49. Zhao, X.G. and Cai, M. (2010b), "Influence of plastic shear strain and confinement-dependent rock dilation on rock failure and displacement near an excavation boundary", Int. J. Rock Mech. Min. Sci., 47(5), 723-738. https://doi.org/10.1016/j.ijrmms.2010.04.003.
  50. Zou, J.F., Yang, T., Ling, W., Guo, W.J. and Huang, F.L. (2019), "A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass", Geomech. Eng., 18(3), 225-234. https://doi.org/10.12989/gae.2019.18.3.225.

Cited by

  1. Effects of interface angles on properties of rock-cemented coal gangue-fly ash backfill bi-materials vol.24, pp.1, 2021, https://doi.org/10.12989/gae.2021.24.1.081