Acknowledgement
This work was financially supported by the University of Kashan (Grant Number: 574613/026). The first author would like to thank the Iranian Nanotechnology Development Committee for their financial support. The part of research of the second author was conducted within S/WM/4/2017 project and was financed by the funds of the Ministry of Science and Higher Education, Poland.
References
- Ahmadi, I. and Najafi, M. (2016), "Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells", Steel. Compos. Struct., 22(5), 1193-1214. https://doi.org/10.12989/scs.2016.22.5.1193.
- Ahmadi, H. and Foroutan, K. (2019), "Combination resonance analysis of FG porous cylindrical shell under two-term excitation", Steel. Compos. Struct., 32(2), 253-264. https://doi.org/10.12989/scs.2019.32.2.253.
- Alibeigloo, A. and Jafarian, H. (2016), "Three-dimensional static and free vibration analysis of carbon nano tube reinforced composite cylindrical shell using differential quadrature method, Int. J. Appl. Mech., 8(3), 1650033. https://doi.org/10.1142/S1758825116500332.
- Ansari, R., Pourashraf, T., Gholami, R. and Rouhi, H. (2016), "Analytical solution approach for nonlinear buckling and postbuckling analysis of cylindrical nanoshells based on surface elasticity theory", Appl. Math. Mech.-Engl. Ed., 37(7), 903-918. https://doi.org/10.1007/s10483-016-2100-9.
- Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Contin., 59, 345359. doi:10.32604/cmc.2019.06641.
- Arefi, M., Kiani, M. and Zenkour, A.M. (2017), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., Doi: 1099636217734279.
- Arefi, M., Abbasi, A.R. and Vaziri Sereshk, M.R. (2016), "Two-dimensional thermoelastic analysis of FG cylindrical shell resting on the Pasternak foundation subjected to mechanical and thermal loads based on FSDT formulation", J. Therm. Stresses, 39, 554-570. http://dx.doi.org/10.1080/01495739.2016.1158607
- Asgari, M. and Akhlaghi, M. (2011), "Natural frequency analysis of 2D-FGM thick hollow cylinder based on three-dimensional elasticity equations", Eur. J. Mech. A/Solids, 30, 72-81. DOI: 10.1016/j.euromechsol.2010.10.002.
- Ferreira, A.J.M. Roque, C.M.C. and Jorge, R.M.N. (2007), "Natural frequencies of FSDT cross-ply composite shells by multiquadrics", Compos. Struct., 77, 296-305. https://doi.org/10.1016/j.compstruct.2005.07.009.
- Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", Comput. Mater. Contin. 59, 433-456. doi:10.32604/cmc.2019.06660.
- Jabbari, M., Bahtui, A. and Eslami, M.R. (2009), "Axisymmetric mechanical and thermal stresses in thick short length FGM cylinders", Int. J. Pres. Ves. Pip., 86(5), 296-306. https://doi.org/10.1016/S0308-0161(02)00043-1.
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014a), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart. Mater. Struct., 23, 125036. https://doi.org/10.1088/0964-1726/23/12/125036.
- Ke, L.L. Wang, Y.S. and Reddy, J.N. (2014b), "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048.
- Loy, C.T. Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Malekzadeh, P. and Heydarpour, Y. (2012), "Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment", Compos. Struct., 94, 2971-2981. DOI, 10.1016/j.compstruct.2012.04.011.
- Mehralian, F., Tadi Beni, Y. and Ansari, R. (2016), "Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell", Compos. Struct., 152, 45-61. DOI, 10.1016/j.compstruct.2016.05.024.
- Niu, B. and Huang, Y. (2019), "An Improved Method for Web Text Affective Cognition Computing Based on Knowledge Graph", Comput. Mater. Contin., 59, 31-55. doi:10.32604/cmc.2019.06032.
- Ootao, Y. and Tanigawa, Y. (2006), "Transient Thermoelastic Analysis for a Functionally Graded Hollow Cylinder, J. Therm. Stresses, 29(11), 1031-1046. https://doi.org/10.1080/01495730600710356.
- Pradhan, S.C., Loy, C.T., Lam, K.Y. and Reddy, J.N. (2000), "Vibration characteristics of functionally graded cylindrical shells under various boundary conditions", Appl. Acoust., 61(1), 111-129. https://doi.org/10.1016/S0003-682X(99)00063-8
- Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Method. Appl. M., 213-216, 196-205. https://doi.org/10.1016/j.cma.2011.11.025.
- Santos, H., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2009), "A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials", Compos. Struct., 91(4), 427-432. https://doi.org/10.1016/j.compstruct.2008.03.004.
- Shakeri, M., Akhlaghi, M. and Hoseini, S.M. (2006), "Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder", Compos. Struct., 76, 174-181. https://doi.org/10.1016/j.compstruct.2006.06.022.
- Shao, Z.S. and Wang, T.J., (2006), "Three-dimensional solutions for the stress fields in functionally graded cylindrical panel with finite length and subjected to thermal/mechanical loads", Int. J. Solids. Struct., 43, 3856-3874. https://doi.org/10.1016/j.ijsolstr.2005.04.043
- Sheng, G.G. and Wang, X. (2010), "Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells", Appl. Math. Model., 34, 2630-2643. https://doi.org/10.1016/j.apm.2009.11.024.
- Shokrollahi, H. (2018), "Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method", Steel. Compos. Struct., 27(1), 35-48. https://doi.org/10.12989/scs.2018.27.1.035.
- Sun, S. Cao, D. and Han, Q. (2013), "Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh-Ritz method", Int. J. Mech. Sci., 68, 180-189. https://doi.org/10.1016/j.ijmecsci.2013.01.013
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Method. Appl. M., 198, 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
- Tutuncu, N. and Ozturk, M. (2001), "Exact solution for stresses in functionally graded pressure vessels", Compos. Part B. Eng., 32:683-686. https://doi.org/10.1016/S1359-8368(01)00041-5.
- Vu-Bac, N. Lahmer, T. Zhuang, X. Nguyen-Thoi, T. Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Softw., 100, 19-31. doi:10.1016/j.advengsoft.2016.06.005.
- Wang, Q. and Varadan, V.K. (2007), "Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes", Smart. Mater. Struct., 16, 178. https://doi.org/10.1088/0964-1726/16/1/022.
- Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory", Compos. Struct., 119, 578-597. https://doi.org/10.1016/j.compstruct.2014.09.032.
Cited by
- Dispersion of waves characteristics of laminated composite nanoplate vol.40, pp.3, 2020, https://doi.org/10.12989/scs.2021.40.3.355
- An investigation of mechanical properties of kidney tissues by using mechanical bidomain model vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.193
- Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.697