References
- ACI 318-05 (2005), Building code requirements for structural concrete and commentary - ACI 318R-05, American concrete institute, Farming Hills, MI, USA.
- Ahmed, M., Hadi, K.M., Hasan, M.A., Mallick, J. and Ahmed, A. (2014), "Evaluating the co-relationship between concrete flexural tensile strength and compressive strength", Int. J. Struct. Eng., 5(2), 115-131. https://doi.org/10.1504/IJSTRUCTE.2014.060902
- AWS (2010), Structural Welding Code-Steel. American Welding Society (AWS), D1 Committee on Structural Welding.
- Cas, B., Bratina, S., Saje, M. and Planinc, I. (2004), "Non-linear analysis of composite steel-concrete beams with incomplete interaction", Steel Compos. Struct., 4(6), 489-507. https://doi.org/10.12989/scs.2004.4.6.489.
- Ding, F.X., Liu, J., Liu, X.M., Guo, F.Q. and Jiang, L.Z. (2016), "Flexural stiffness of steel-concrete composite beam under positive moment", Steel Compos. Struct., 20(6), 1369-1389. http://dx.doi.org/10.12989/scs.2016.20.6.1369.
- Dogan, O. and Roberts, T.M. (2010), "Comparing experimental deformations of steel-concrete-steel sandwich beams with full and partial interaction theories", Int. J. Phys. Sci., 5(10), 1544-1557.
- Epackachi, S., Nguyen, N.H., Kurt, E.G., Whittaker, A.S. and Varma, A.H. (2014), "In-plane seismic behavior of rectangular steel-plate composite wall piers", J. Struct. Eng., 141(7), 04014176. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001148.
- Eurocode 4 (2009), Design of composite steel and concrete structures-Part 2: General rules and rules for bridges. SoTN Bratislava.
- Fanaie, N., Esfahani, F.G. and Soroushnia, S. (2015), "Analytical study of composite beams with different arrangements of channel shear connectors", Steel Compos. Struct., 19(2), 485-501. http://dx.doi.org/10.12989/scs.2015.19.2.485.
- Hibbitt, D., Karlsson, B. and Sorenson, P. (2011), "Simulia ABAQUS 6.11 Users' Manual".
- Hognestad, E, Hanson, N.W. and McHenry, D. (1955), "Concrete stress distribution in ultimate strength design", J. Proceedings, 52(12), 455-480.
- Hossain, K.A. and Wright, H.D. (2004), "Experimental and theoretical behaviour of composite walling under in-plane shear", J Constr Steel Res., 60(1), 59-83. https://doi.org/10.1016/j.jcsr.2003.08.004.
- Huang, Z. and Liew, J.R. (2016), "Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors", J Constr Steel Res, 124, 142-162. https://doi.org/10.1016/j.jcsr.2016.05.001.
- Ji, X., Cheng, X., Jia, X. and Varma, A.H. (2017), "Cyclic inplane shear behavior of double-skin composite walls in highrise buildings", J Struct Eng, 143(6), 04017025. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001749.
- Kurt, E.G., Varma, A.H., Booth, P. and Whittaker, A.S. (2016), "In-plane behavior and design of rectangular SC wall piers without boundary elements", J Struct Eng, 142(6), 04016026. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001481.
- Liew, J.R. and Sohel, K.M. (2009), "Lightweight steel-concrete-steel sandwich system with J-hook connectors", Eng. Struct., 31(5), 1166-1178. https://doi.org/10.1016/j.engstruct.2009.01.013.
- Oduyemi, T.O. and Wright, H.D. (1989), "An experimental investigation into the behaviour of double-skin sandwich beams", J Constr Steel Res, 14(3), 197-220. https://doi.org/10.1016/0143-974X(89)90073-4.
- Prabha, P., Marimuthu, V., Saravanan, M., Palani, G.S., Lakshmanan, N. and Senthil, R. (2013), "Effect of confinement on steel-concrete composite light-weight load-bearing wall panels under compression", J Constr Steel Res., 81, 11-19. https://doi.org/10.1016/j.jcsr.2012.10.008.
- Qin, Y., Shu, G.P., Zhou, G.G. and Han, J.H. (2019), "Compressive behavior of double skin composite wall with different plate thicknesses", J. Constr. Steel Res., 157, 297-313. https://doi.org/10.1016/j.jcsr.2019.02.023.
- Ranzi, G. (2006), "Short-and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate", Steel Compos. Struct., 6(3), 237-255. https://doi.org/10.12989/scs.2006.6.3.237.
- Ranzi, G., Bradford, M.A. and Uy, B. (2003), "A general method of analysis of composite beams with partial interaction", Steel Compos. Struct., 3(3), 169-184. https://doi.org/10.12989/scs.2003.3.3.169.
- Sabouri-Ghomi, S., Jahani, Y. and Bhowmick, A.K. (2016), "Partial interaction theory to analyze composite (steel-concrete) shear wall systems under pure out-of-plane loadings", Thin Wall. Struct., 104, 211-224. https://doi.org/10.1016/j.tws.2016.03.013.
- Sener, K.C. and Varma, A.H. (2014), "Steel-plate composite walls: Experimental database and design for out-of-plane shear", J. Constr. Steel Res., 100, 197-210, https://doi.org/10.1016/j.jcsr.2014.04.014.
- Sener, K.C., Varma, A.H. and Ayhan, D. (2015), "Steel-plate composite (SC) walls: Out-of-plane flexural behavior, database, and design", J. Constr. Steel Res., 108, 46-59. https://doi.org/10.1016/j.jcsr.2015.02.002.
- Sener, K.C., Varma, A.H. and Seo, J. (2016), "Experimental and numerical investigation of the shear behavior of steel-plate composite (SC) beams without shear reinforcement", Eng. Struct., 127, 495-509, https://doi.org/10.1016/j.engstruct.2016.08.053.
- Seo, J., Varma, A.H., Sener, K. and Ayhan, D. (2016), "Steelplate composite (SC) walls: In-plane shear behavior, database, and design", J. Constr Steel Res., 119, 202-215. https://doi.org/10.1016/j.jcsr.2015.12.013.
- Sohel, K.M. and Liew, J.R. (2011), "Steel-Concrete-Steel sandwich slabs with lightweight core-Static performance", Eng Struct., 33(3), 981-992. https://doi.org/10.1016/j.engstruct.2010.12.019.
- Solomon, S.K., Smith, D.W. and Cusens, A.R. (1976), "Flexural tests of steel-concrete-steel sandwiches", Mag. Concrete Res., 28(94), 13-20. https://doi.org/10.1680/macr.1976.28.94.13.
- Turmo, J., Lozano-Galant, J.A., Mirambell, E. and Xu, D. (2015), "Modeling composite beams with partial interaction", J. Constr. Steel Res., 114, 380-393. https://doi.org/10.1016/j.jcsr.2015.07.007.
- Wright, H.D., Oduyemi, T.O. and Evans, H.R. (1991), "The design of double skin composite elements", J. Constr. Steel Res., 19(2), 111-132. https://doi.org/10.1016/0143-974X(91)90037-2.
- Xie, M., Foundoukos, N. and Chapman, J.C. (2007), "Static tests on steel-concrete-steel sandwich beams", J. Constr. Steel Res., 63(6), 735-750. https://doi.org/10.1016/j.jcsr.2006.08.001
- Yan, J.B., Liew, J.R. and Zhang, M.H. (2014), "Tensile resistance of J-hook connectors used in Steel-Concrete-Steel sandwich structure", J. Constr. Steel Res., 100, 146-162. https://doi.org/10.1016/j.jcsr.2014.04.023.
- Yan, J.B., Liew, J.R., Zhang, M.H. and Sohel, K.M. (2015), "Experimental and analytical study on ultimate strength behavior of steel-concrete-steel sandwich composite beam structures", Mater. Struct., 48(5), 1523-1544. https://doi.org/10.1617/s11527-014-0252-4.
- Yan, J.B., Wang, X.T. and Wang, T. (2018), "Compressive behaviour of normal weight concrete confined by the steel face plates in SCS sandwich wall", Constr. Build. Mater., 171, 437-454. https://doi.org/10.1016/j.conbuildmat.2018.03.143.
- Yang, Y., Liu, J. and Fan, J. (2016), "Buckling behavior of double-skin composite walls: An experimental and modeling study", J. Constr. Steel Res., 121, 126-135. https://doi.org/10.1016/j.jcsr.2016.01.019.
- Zhang, K., Varma, A.H., Malushte, S.R. and Gallocher, S., (2014), "Effect of shear connectors on local buckling and composite action in steel concrete composite walls", Nucl. Eng. Des., 269, 231-239. http://doi.org/10.1016/j.nucengdes.2013.08.035.
- Zhao, Q. and Astaneh-Asl, A. (2004), "Cyclic behavior of traditional and innovative composite shear walls", J. Struct. Eng., 130(2), 271-284. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(271).
- Zhao, W., Guo, Q., Huang, Z., Tan, L., Chen, J. and Ye, Y. (2016), "Hysteretic model for steel-concrete composite shear walls subjected to in-plane cyclic loading", Eng. Struct., 106, 461-470. https://doi.org/10.1016/j.engstruct.2015.10.031.
Cited by
- Behavior of L-shaped double-skin composite walls under compression and biaxial bending vol.37, pp.4, 2020, https://doi.org/10.12989/scs.2020.37.4.405
- Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads vol.38, pp.4, 2020, https://doi.org/10.12989/scs.2021.38.4.463