References
- S. Ali and N. A. Dar, On ∗-centralizing mappings in rings with involution, Georgian Math. J. 21 (2014), no. 1, 25-28. https://doi.org/10.1515/gmj-2014-0006
- H. E. Bell and M. N. Daif, On commutativity and strong commutativity-preserving maps, Canad. Math. Bull. 37 (1994), no. 4, 443-447. https://doi.org/10.4153/CMB-1994-064-x
- M. Bresar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), no. 2, 525-546. https://doi.org/10.2307/2154392
- M. Bresar and C. R. Miers, Strong commutativity preserving maps of semiprime rings, Canad. Math. Bull. 37 (1994), no. 4, 457-460. https://doi.org/10.4153/CMB-1994-066-4
- Q. Deng and M. Ashraf, On strong commutativity preserving mappings, Results Math. 30 (1996), no. 3-4, 259-263. https://doi.org/10.1007/BF03322194
- A. Mamouni, B. Nejjar, and L. Oukhtite, Differential identities on prime rings with involution, J. Algebra Appl. 17 (2018), no. 9, 1850163, 11 pp. https://doi.org/10.1142/S0219498818501633
- A. Mamouni, L. Oukhtite, and B. Nejjar, On ∗-semiderivations and ∗-generalized semiderivations, J. Algebra Appl. 16 (2017), no. 4, 1750075, 8 pp. https://doi.org/10.1142/S021949881750075X
- B. Nejjar, A. Kacha, A. Mamouni, and L. Oukhtite, Commutativity theorems in rings with involution, Comm. Algebra 45 (2017), no. 2, 698-708. https://doi.org/10.1080/00927872.2016.1172629
- E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686
- P. Semrl, Commutativity preserving maps, Linear Algebra Appl. 429 (2008), no. 5-6, 1051-1070. https://doi.org/10.1016/j.laa.2007.05.006