References
- J. Flynn, S. Dance & D. Schaefer. (2017). Industry 4.0 and its Potential Impact on Employment Demographics in the UK. Advances in Transdisciplinary Engineering, 6, 239-244.
- M. Skilton & F. Hovsepian. (2017). The 4th industrial revolution: Responding to the impact of artificial intelligence on business. Cham: Springer.
- A. M. French, J. Shim, M. Risius & H. Jain. (2019). The 4th Industrial Revolution Powered by the Integration of 5G, AI, and Blockchain. AMCIS in Cancun.
- T. Schroder. (2019). A regional approach for the development of TVET systems in the light of the 4th industrial revolution: the regional association of vocational and technical education in Asia. International Journal of Training Research, 17(1), 83-95. https://doi.org/10.1080/14480220.2019.1629728
- U. Meyer. (2019). The emergence of an envisioned future. Sensemaking in the case of "Industrie 4.0" in Germany. Futures, 109, 130-141. https://doi.org/10.1016/j.futures.2019.03.001
- S. Hu & H. Chang. (2019). Employment Trends in the Fourth industrial Revolution Era: Analysis of Hiring Trends of Autonomous Automobile Industry Related Companies. Journal of Digital Convergence, 17(1), 1-8. DOI:https://doi.org/10.14400/JDC.2019.17.1.001
- B. H. Shin & H. K. Jeon. (2018). A Study on Disaster Information Support using Big Data. Journal of the Korea Convergence Society, 9(8), 25-32. DOI : https://doi.org/10.15207/JKCS.2018.9.8.025
- H. Lee, Y. W. Kim & K. Y. Kim. (2018). Implement of MapReduce-based Big Data Processing Scheme for Reducing Big Data Processing Delay Time and Store Data. Journal of the Korea Convergence Society, 9(10), 13-19. DOI : https://doi.org/10.15207/JKCS.2018.9.10.013
- L. C. Freeman. (2017). Research methods in social network analysis. New York: Routledge.
- E. Giuliani & C. Pietrobelli. (2016). Social Network Analysis for Evaluating Cluster Development Programs. The Impact Evaluation of Cluster Development Programs, 37, 117-150.
- J. E. Mote. (2005). R&D ecology: using 2-mode network analysis to explore complexity in R&D environments. Journal of Engineering and Technology Management, 22(1-2), 93-111. https://doi.org/10.1016/j.jengtecman.2004.11.004
- F. Ciarapica, M. Bevilacqua & S. Antomarioni. (2019). An approach based on association rules and social network analysis for managing environmental risk: A case study from a process industry. Process Safety and Environmental Protection, 128, 50-64. https://doi.org/10.1016/j.psep.2019.05.037
- J. Song, Q. Feng, X. Wang, H. Fu, W. Jiang & B. Chen. (2019). Spatial association and effect evaluation of CO2 emission in the Chengdu-Chongqing urban agglomeration: quantitative evidence from social network analysis. Sustainability, 11(1), 1. https://doi.org/10.3390/su11010001
- B. K. Sung & Y. Y. You. (2018). Analysis of Vocational Training Needs Using Big Data Technique. Journal of the Korea Convergence Society, 9(5), 21-26. DOI : https://doi.org/10.15207/JKCS.2018.9.5.021
- M. A. Somers, S. J. Cabus, W. Groot and H. M. van den Brink. (2019). Horizontal mismatch between employment and field of education: Evidence from a systematic literature review. Journal of Economic Surveys, 33(2), 567-603. https://doi.org/10.1111/joes.12271
- J. P. Martin & R. Torres. (2000). Korean Labor Market and Social Safety-Net Reforms: Challenges and Policy Requirements. Journal of the Korean Economy, 1(2), 267-300.
- L. Barth et al. (2014). Semantic word cloud representations: Hardness and approximation algorithms. Heidelberg: Springer.