DOI QR코드

DOI QR Code

Minimum cost strengthening of existing masonry arch railway bridges

  • Rafiee, Amin (Department of Civil Engineering, University of Maragheh)
  • Received : 2019.03.01
  • Accepted : 2020.02.29
  • Published : 2020.07.25

Abstract

The preservation of historic masonry-arch railway bridges is of paramount importance due to their economic benefits. These bridges which belong to past centuries may nowadays be expected to carry loads higher than those for which they were designed. Such an increase in loads may be because of increase in transportation speed or in the capacity of freight-wagons. Anyway, adequate increase in their load-carrying-capacity through structural-strengthening is required. Moreover, the increasing costs of material/construction urge engineers to optimize their designs to obtain the minimum-cost one. This paper proposes a novel numerical optimization method to minimize the costs associated with strengthening of masonry-arch railway bridges. To do so, the stress/displacement responses of Sahand-Goltappeh bridge are assessed under ordinary train pass as a case study. For this aim, 3D-Finite-Element-Model is created and calibrated using experimental test results. Then, it is strengthened such that following goals are achieved simultaneously: (1) the load-carrying-capacity of the bridge is increased; (2) the structural response of the bridge is reduced to a certain limit; and, (3) the costs needed for such strengthening are minimized as far as possible. The results of the case study demonstrate the applicability/superiority of the proposed approach. Some economic measures are also recommended to further reduce the total strengthening cost.

Keywords

Acknowledgement

The author wishes to acknowledge support from the Research and Training Center of the Railways of the Islamic Republic of Iran.

References

  1. Altunisik, A.C., Bayraktar, A. and Genc, A.F. (2015), "Determination of the restoration effect on the structural behavior of masonry arch bridges", Smart Struct. Syst., 16(1), 101-139. http://dx.doi.org/10.12989/sss.2015.16.1.101
  2. Altunisik, A.C., Kanbur, B. and Genc, A.F. (2015), "The effect of arch geometry on the structural behavior of masonry bridges", Smart Struct. Syst., 16(6), 1069-1089. http://dx.doi.org/10.12989/sss.2015.16.6.1069
  3. Ayyildiz, M. and Cetinkaya, K. (2016), "Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator", Neural. Comput. Applic., 27(4), 825-836. https://doi.org/10.1007/s00521-015-1898-8.
  4. Azar, B.F., Hadidi, A. and Rafiee, A. (2015), "An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions", Struct. Eng. Mech., 55(5), 979-999. http://dx.doi.org/10.12989/sem.2015.55.5.979.
  5. Bien, J., Elfgren, L. and Olofsson, J. (2007), Sustainable Bridges - Assessment for Future Traffic Demands and Longer Lives, Dolnoslaskie Wydawnictwo Edukacyjne, Wroclaw, Poland.
  6. Breccolotti, M., Severini, L., Cavalagli, N., Bonfigli, F.M. and Gusella, V. (2018), "Rapid evaluation of in-plane seismic capacity of masonry arch bridges through limit analysis", Earthq. Struct., 15(5), 541-553. http://dx.doi.org/10.12989/eas.2018.15.5.541.
  7. Briccoli Bati, S.B. and Rovero, L. (2008), "Towards a methodology for estimating strength and collapse mechanism in masonry arches strengthened with fibre reinforced polymer applied on external surfaces", Mater. Struct., 41(7), 1291-1306. https://doi.org/10.1617/s11527-007-9328-8.
  8. Briccoli Bati, S., Rovero, L. and Tonietti, U. (2007), "Strengthening masonry arches with composite materials", J. Compos. Constr., 11(1), 33-41. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:1(33).
  9. Cakir, F. and Seker, B.S. (2015), "Structural performance of renovated masonry low bridge in Amasya, Turkey", Earthq. Struct., 8(6), 1387-1406. http://dx.doi.org/10.12989/eas.2015.8.6.1387.
  10. Carozzi, F.G., Poggi, C., Bertolesi, E. and Milani, G. (2018), "Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation", Compos. Struct., 187, 466-480. https://doi.org/10.1016/j.compstruct.2017.12.075.
  11. Castillo, E.d.R., Griffith, M. and Ingham, J. (2018), "Seismic behavior of RC columns flexurally strengthened with FRP sheets and FRP anchors", Compos. Struct., 203, 382-395. https://doi.org/10.1016/j.compstruct.2018.07.029.
  12. Cheng, Y.M., Li, L., Lansivaara, T., Chi, S.C. and Sun, Y.J. (2008), "An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis", Eng. Optim., 40(2), 95-115. https://doi.org/10.1080/03052150701618153.
  13. Choi, S-U., Choi, B. and Lee, S. (2017), "Prediction of local scour around bridge piers using the ANFIS method", Neural. Comput. & Applic., 28(2), 335-344. https://doi.org/10.1007/s00521-015-2062-1. https://doi.org/10.1007/s00521-015-2062-1..
  14. Cui, Z., Sun, B., Wang, G-G., Xue, Y. and Chen, J. (2017), "A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber-physical systems", J. Parallel Distrib. Comput., 103, 42-52. https://doi.org/10.1016/j.jpdc.2016.10.011.
  15. D'Altri, A.M., Carloni, Ch., Miranda, S.d. and Castellazzi, G. (2018), "Numerical modeling of FRP strips bonded to a masonry substrate", Compos. Struct., 200, 420-433. https://doi.org/10.1016/j.compstruct.2018.05.119.
  16. D'Ambrisi, A., Focacci, F. and Luciano, R. (2014), "Experimental investigation on flexural behavior of timber beams repaired with CFRP plates", Compos. Struct., 108, 720-728. https://doi.org/10.1016/j.compstruct.2013.10.005.
  17. D'Ambrisi, A., Focacci, F., Luciano, R., Alecci, V. and De Stefano, M. (2015), "Carbon-FRCM materials for structural upgrade of masonry arch road bridges", Compos. Part BEng., 75, 355-366. https://doi.org/10.1016/j.compositesb.2015.01.024.
  18. De Lorenzis, L., Dimitri, R., Tegola, A.L. (2007), "Reduction of the lateral thrust of masonry arches and vaults with FRP composites", Constr. Build. Mater., 21(7), 1415-1430. https://doi.org/10.1016/j.conbuildmat.2006.07.009
  19. Dong, F. (2018), "Virtual reality research on vibration characteristics of long-span bridges with considering vehicle and wind loads based on neural networks and finite element method", Neural. Comput. Applic., 29(5), 1303-1309. https://doi.org/10.1007/s00521-017-2861-7.
  20. Feng, Y., Wang, G. G., Deb, S., Lu, M. and Zhao, X. J. (2017), "Solving 0-1 knapsack problem by a novel binary monarch butterfly optimization", Neural Comput. & Applic., 28(7), 1619- 1634. https://doi.org/10.1007/s00521-015-2135-1.
  21. Feng, Y. and Wang, G.G. (2018), "Binary Moth Search Algorithm for Discounted {0-1} Knapsack Problem", IEEE Access, 6, 10708-10719. https://doi.org/10.1109/access.2018.2809445
  22. Feng, Y., Yang, J., Wu, C., Lu, M. and Zhao, X.J. (2018), "Solving 0-1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation", Memet. Comput., 10, 135-150. https://doi.org/10.1007/s12293-016-0211-4.
  23. Gao, Q., Yang, M.G. and Qiao, J.D. (2017), "A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder", Struct. Eng. Mech., 64(5), 567-577. http://dx.doi.org/10.12989/sem.2017.64.5.567.
  24. Goldberg, D. (1989), Genetic Algorithms in Search, Optimization and Machine Learning (1st Ed), Addison-Wesley Professional, Pearson, USA.
  25. Guo, L., Wang, G-G., Gandomi, A.H., Alavi, A.H. and Duan, H. (2014), "A new improved krill herd algorithm for global numerical optimization", Neurocomputing 138, 392-402. https://doi.org/10.1016/j.neucom.2014.01.023.
  26. Hadidi, A. and Rafiee, A. (2014), "Harmony search based, improved particle swarm optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., 50(3), 323-347. http://dx.doi.org/10.12989/sem.2014.50.3.323.
  27. Hadidi, A. and Rafiee, A. (2015), "A new hybrid algorithm for simultaneous size and semi-rigid connection type optimization of steel frames", Int. J. Steel Struct., 15(1), 89-102. https://doi.org/10.1007/s13296-015-3006-4.
  28. Hadidi, A., Azar, B.F. and Rafiee, A. (2016), "Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations", Earthq. Struct., 11(4), 701-721. http://dx.doi.org/10.12989/eas.2016.11.4.701.
  29. Hadidi, A., Jasour, R. and Rafiee, A. (2016), "On the progressive collapse resistant optimal seismic design of steel frames", Struct. Eng. Mech., 60(5), 761-779. http://dx.doi.org/10.12989/sem.2016.60.5.761.
  30. Hadidi, A., Azar, B.F. and Rafiee, A. (2017), "Efficient response surface method for high-dimensional structural reliability analysis", Struct. Saf., 68, 15-27. https://doi.org/10.1016/j.strusafe.2017.03.006.
  31. Hamza, M.F., Yap, H.J. and Choudhury, I.A. (2017), "Recent advances on the use of meta-heuristic optimization algorithms to optimize the type-2 fuzzy logic systems in intelligent control", Neural. Comput. & Applic., 28(5), 979-999. https://doi.org/10.1007/s00521-015-2111-9.
  32. Iranian Organization for Planning and Budget (2017), Iranian Doc. 308, Guidelines for The Design of Retaining Walls, Iranian Organization for Planning and Budget. (In Persian).
  33. Iranian Organization for Planning and Budget (2018), Iranian Prices List for Road, Railway and Airport Construction Services, Iranian Organization for Planning and Budget. (In Persian).
  34. Islam, M.S., Do, J. and Kim, D. (2018), "Vibration control of offshore wind turbine using RSM and PSO-optimized Stockbridge damper under the earthquakes", Smart Struct. Syst., 21(2), 207-223. http://dx.doi.org/10.12989/sss.2018.21.2.207.
  35. Jansseune, A. and De Corte, W. (2017), "The influence of convoy loading on the optimized topology of railway bridges", Struct. Eng. Mech., 64(1), 45-58. http://dx.doi.org/10.12989/sem.2017.64.1.045.
  36. Kamboj, V.K., Bath, S.K. and Dhillon, J.S. (2017), "Hybrid HS- random search algorithm considering ensemble and pitch violation for unit commitment problem", Neural. Comput. & Applic., 28(5), 1123-1148. https://doi.org/10.1007/s00521-015-2114-6.
  37. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, vol.IV, 1942-1948.
  38. Kim, Y.J. (2019), "State of the practice of FRP composites in highway bridges", Eng. Struct., 179, 1-8. https://doi.org/10.1016/j.engstruct.2018.10.067.
  39. Lee, K.S. and Geem, Z.W. (2005), "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice", Comput. Methods Appl. Mech. Eng., 194(36-38), 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007.
  40. Liu, K., Gong, D., Meng, F., Chen, H. and Wang, G-G. (2017), "Gesture segmentation based on a two-phase estimation of distribution algorithm", Inf. Sci., 394-395, 88-105. https://doi.org/10.1016/j.ins.2017.02.021.
  41. Moreira, V.N., Fernandes, J., Matos, J.C. and Oliveira, D.V. (2016), "Reliability-based assessment of existing masonry arch railway bridges", Constr. Build. Mater., 115, 544-554. https://doi.org/10.1016/j.conbuildmat.2016.04.030.
  42. Mun, S. and Geem, Z.W. (2009), "Determination of viscoelastic and damage properties of hot mix asphalt concrete using a harmony search algorithm", Mech. Mater., 41(3), 339-353. https://doi.org/10.1016/j.mechmat.2008.11.008.
  43. Oliveira, D.V., Basilio, I. and Lourenco, P.B. (2010), "Experimental Behavior of FRP Strengthened Masonry Arches", J. Compos. Constr., 14(3), 312-322. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000086.
  44. Onat, O. (2019), "Fundamental vibration frequency prediction of historical masonry bridges", Struct. Eng. Mech., 69(2), 155-162. http://dx.doi.org/10.12989/sem.2019.69.2.155.
  45. Parghi, A. and Alam, M.S. (2018), "A review on the application of sprayed-FRP composites for strengthening of concrete and masonry structures in the construction sector", Compos. Struct., 187, 518-534. https://doi.org/10.1016/j.compstruct.2017.11.085.
  46. Rao, R.V. (2016), "Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Indust. Eng. Comput., 7, 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004.
  47. Rizk-Allah, R.M., El-Sehiemy, R.A. and Wang G-G. (2018), "A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution", Appl. Soft Comput., 63, 206-222. https://doi.org/10.1016/j.asoc.2017.12.002.
  48. Rovithis, E.N. and Pitilakis, K.D. (2016), "Seismic assessment and retrofitting measures of a historic stone masonry bridge", Earthq. Struct., 10(3), 645-667. http://dx.doi.org/10.12989/eas.2016.10.3.645.
  49. Sayin, E. (2016), "Nonlinear seismic response of a masonry arch bridge", Earthq. Struct., 10(2), 483-494. http://dx.doi.org/10.12989/eas.2016.10.2.483.
  50. Shi, Y. and Eberhart, R. (1998), "A modified particle swarm optimizer", Proc. IEEE Int. Conf. Evolutionary Computation, Piscataway, IEEE Press, 69-73.
  51. Siwowski, T., Kulpa, M., Rajchel, M. and Poneta, P. (2018), "Design, manufacturing and structural testing of all-composite FRP bridge girder", Compos. Struct., 206, 814-827. https://doi.org/10.1016/j.compstruct.2018.08.048.
  52. Triantafillou, T.C. and Fardis, M.N. (1997), "Strengthening of historic masonry structures with composite materials", Mater. Struct., 30, 486-496. https://doi.org/10.1007/BF02524777.
  53. Wang, G-G., Gandomi, A.H. and Alavi, A.H. (2013), "A chaotic particle-swarm krill herd algorithm for global numerical optimization", Kybernetes, 42(6), 962-978. https://doi.org/10.1108/K-11-2012-0108.
  54. Wang, G-G., Gandomi, A.H. and Alavi, A.H. (2014), "An effective krill herd algorithm with migration operator in biogeography-based optimization", Appl. Math. Model. 38(9-10), 2454-2462. https://doi.org/10.1016/j.apm.2013.10.052.
  55. Wang, G-G., Gandomi, A.H. and Alavi, A.H. (2014), "Stud krill herd algorithm", Neurocomputing, 128, 363-370. https://doi.org/10.1016/j.neucom.2013.08.031.
  56. Wang, G. G., Gandomi, A. H., Alavi, A. H., & Hao, G. S. (2014), "Hybrid krill herd algorithm with differential evolution for global numerical optimization", Neural. Comput. & Applic., 25(2), 297-308. https://doi.org/10.1007/s00521-013-1485-9.
  57. Wang, G-G., Gandomi, A.H., Yang, X-S. and Alavi, A.H. (2014), "A novel improved accelerated particle swarm optimization algorithm for global numerical optimization", Eng. Comput., 31(7), 1198-1220. https://doi.org/10.1108/EC-10-2012-0232.
  58. Wang, G-G., Guo, L., Gandomi, A.H., Hao, G-S. and Wang, H. (2014), "Chaotic krill herd algorithm", Inf. Sci. 274, 17-34. https://doi.org/10.1016/j.ins.2014.02.123.
  59. Wang, G-G., Guo, L., Wang, H., Duan, H., Liu, L. and Li, J. (2014), "Incorporating mutation scheme into krill herd algorithm for global numerical optimization", Neural. Comput. & Applic., 24(3-4), 853-871. https://doi.org/10.1007/s00521-012-1304-8.
  60. Wang, G-G., Chu, H-C. E. and Mirjalili, S. (2016), "Three-dimensional path planning for UCAV using an improved bat algorithm", Aerosp. Sci. Technol. 49, 231-238. https://doi.org/10.1016/j.ast.2015.11.040.
  61. Wang, G-G., Coelho, L., Gao, X.Z. and Deb, S. (2016), "A new metaheuristic optimisation algorithm motivated by elephant herding behaviour", Int. J. Bio-Inspired Comput., 8(6), 394-409. https://doi.org/10.1504/IJBIC.2016.081335.
  62. Wang, G-G., Deb, S., Gandomi, A.H. and Alavi, A.H. (2016), "Opposition-based krill herd algorithm with Cauchy mutation and position clamping", Neurocomputing, 177, 147-157. https://doi.org/10.1016/j.neucom.2015.11.018.
  63. Wang, G-G., Deb, S., Gandomi, A.H., Zhang, Z. and Alavi, A.H. (2016), "Chaotic cuckoo search", Soft Comput., 20(9), 3349-3362. https://doi.org/10.1007/s00500-015-1726-1.
  64. Wang, G-G., Gandomi, A.H., Alavi, A.H. and Deb, S. (2016), "A hybrid method based on krill herd and quantum-behaved particle swarm optimization", Neural. Comput. & Applic., 27(4), 989-1006. https://doi.org/10.1007/s00521-015-1914-z.
  65. Wang, G-G., Gandomi, A.H., Alavi, A.H. and Deb, S. (2016), "A multi-stage krill herd algorithm for global numerical optimization", Int. J. Artif. Intell. T., 25(2), 1550030. https://doi.org/10.1142/S021821301550030X
  66. Wang, G-G., Gandomi, A.H., Yang, X.-S. and Alavi, A.H. (2016), "A new hybrid method based on krill herd and cuckoo search for global optimisation tasks", Int. J. Bio-Inspired Comput., 8(5), 286-299. https://doi.org/10.1142/S021821301550030X.
  67. Wang, G. G., Gandomi, A. H., Zhao, X., & Chu, H. C. E. (2016), "Hybridizing harmony search algorithm with cuckoo search for global numerical optimization", Soft Comput., 20, 273-285. https://doi.org/10.1007/s00500-014-1502-7
  68. Wang, G-G., Lu, M., Dong, Y-Q. and Zhao, X-J. (2016), "Self-adaptive extreme learning machine", Neural. Comput. Applic., 27, 291-303. https://doi.org/10.1504/IJBIC.2016.079569.
  69. Wang, G-G., Cai, X., Cui, Z., Min, G. and Chen, J. (2017), "High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm", IEEE Trans. Emerg. Top. Comput. https://doi.org/10.1109/TETC.2017.2703784
  70. Wang, G-G. (2018), "Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems", Memet. Comput., 10, 151-164. https://doi.org/10.1007/s12293-016-0212-3.
  71. Wang, G-G., Deb, S. and Coelho, L. (2018), "Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems", Int. J. Bio-Inspired Comput., 12(1), 1-22. https://doi.org/10.1504/IJBIC.2018.093328.
  72. Wang, H. and Yi, J. (2018), "An improved optimization method based on krill herd and artificial bee colony with information exchange", Memet. Comput., 10, 177-198. https://doi.org/10.1007/s12293-017-0241-6.
  73. Wang, G-G., Deb, S. and Cui, Z. (2019), "Monarch butterfly optimization", Neural Comput. Applic. 31, 1995-2014. https://doi.org/10.1007/s00521-015-1923-y.
  74. Wang, G-G., Gandomi, A.H., Alavi, A.H. and Gong, D. (2019), "A comprehensive review of krill herd algorithm: variants, hybrids and applications", Artif. Intell. Rev., 51(1), 119-148. https://doi.org/10.1007/s10462-017-9559-1.
  75. Wang, G-G. and Tan, Y. (2019), "Improving metaheuristic algorithms with information feedback models", IEEE Trans. Cybern., 49(2), 542-555. https://doi.org/10.1109/TCYB.2017.2780274.
  76. Xiong, C., Lu, H. and Zhu, J. (2018), "Reality of virtual damage identification based on neural networks and vibration analysis of a damaged bridge under a moving vehicle", Neural. Comput. Applic., 29(5), 1331-1341. https://doi.org/10.1007/s00521-017-2841-y.
  77. Yi, J-H., Wang, J. and Wang, G-G. (2016), "Improved probabilistic neural networks with self-adaptive strategies for transformer fault diagnosis problem", Adv. Mech. Eng., 8(1), 1-13. https://doi.org/10.1177/1687814015624832.
  78. Yu, C., Xiang, H., Li, Y. and Pan, M. (2018), "Optimization of longitudinal viscous dampers for a freight railway cable-stayed bridge under braking forces", Smart Struct. Syst., 21(5), 669-675. http://dx.doi.org/10.12989/sss.2018.21.5.669.
  79. Zou, D-X., Deb, S. and Wang, G-G. (2018), "Solving IIR system identification by a variant of particle swarm optimization", Neural. Comput. Applic., 30(3), 685-698. https://doi.org/10.1007/s00521-016-2338-0.