References
- Amoushahi, H. (2018), "Time depended deformation and buckling of viscoelastic thick plates by a fully discretized finite strip method using Third order shear deformation theory", European J. Mech. A Solids, 68, 38-52. https://doi.org/10.1016/j.euromechsol.2017.11.003.
- Amoushahi, H. and Goodarzian, F. (2018), "Dynamic and buckling analysis of composite laminated plates with and without strip delamination under hygrothermal effects using finite strip method", Thin-Walled Struct., 131, 88-101. https://doi.org/10.1016/j.tws.2018.06.030.
- Amoushahi, H. and Lajevardi, M.M. (2018), "Buckling of functionally graded plates under thermal, axial, and shear in-plane loading using complex finite strip formulation", J. Thermal Stresses, 41(2), 182-203. https://doi.org/10.1080/01495739.2017.1389326.
- Akhras, G. and Li, W. (2007), "Spline finite strip analysis of composite plates based on higher-order zigzag composite plate theory", Compos. Struct., 78(1), 112-118. https://doi.org/10.1016/j.compstruct.2005.08.016.
- Aydogdu, Me. and Aksencer, T. (2018), "Buckling of cross-ply composite plates with linearly varying In-plane loads", Compos. Struct., 183, 221-231. https://doi.org/10.1016/j.compstruct.2017.02.085.
- Bouazza, M., Kenouza, Y., Benseddiq, N. and Zenkour, A.M. (2017), "A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates", Compos. Struct., 182, 533-541. https://doi.org/10.1016/j.compstruct.2017.09.041.
- Cheung, Y. K. (1968), Finite Strip Method in Structural Analysis, Pergamon Press, New York, NY, USA.
- Cho, M. and Parmerter, R. (1993), "Efficient higher order composite plate theory for general lamination configurations", AIAA J., 31(7), 1299-1306. https://doi.org/10.2514/3.11767.
- Fallah, N. and Delzendeh, M. (2018), "Free vibration analysis of laminated composite plates using meshless finite volume method", Eng. Anal. Boundary Elements, 88, 132-144. https://doi.org/10.1016/j.enganabound.2017.12.011.
- Hosseini-Hashemi, S., Khorshidi, K. and Amabili, M. (2008), "Exact solution for linear buckling of rectangular Mindlin plates", J. Sound Vib., 315(1), 318-342. https://doi.org/10.1016/j.jsv.2008.01.059.
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
- Mechab, I. Mechab, B. and Benaissa, S. (2013) "Static and dynamic analysis of functionally graded plates using four-variable refined plate theory by the new function", Compos. Part B Eng., 45(1), 748-757. https://doi.org/10.1016/j.compositesb.2012.07.015.
- Raghu, P., Rajagopal, A. and Reddy, J.N. (2018), "Nonlocal nonlinear finite element analysis of composite plates using TSDT", Compos. Struct., 185, 38-50. https://doi.org/10.1016/j.compstruct.2017.10.075.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, Florida, USA.
- Sayyad, A.S., Shinde, B.M. and Ghugal, Y.M. (2016), "Bending, vibration and buckling of laminated composite plates using a simple four variable plate theory", Latin American J. Solids Struct., 13(3), 516-535. http://dx.doi.org/10.1590/1679-78252241.
- Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40(1), 137-146. https://doi.org/10.2514/2.1622.
- Singh, D.B. and Singh, B.N. (2017), "New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates", J. Mech. Sci., 131, 265-277. https://doi.org/10.1016/j.ijmecsci.2017.06.053.
- Sreehari, V.M., George, L.J. and Maiti, D.K. (2016), "Bending and buckling analysis of smart composite plates with and without internal flaw using an inverse hyperbolic shear deformation theory", Compos. Struct., 138, 64-74. https://doi.org/10.1016/j.compstruct.2015.11.045.
- Tanzadeh, H. and Amoushahi, H. (2018), "Buckling and free vibration analysis of piezoelectric laminated composite plates using various plate deformation theories", European J. Mech. A Solids, 74, 242-256. https://doi.org/10.1016/j.euromechsol.2018.11.013.
- Tran, L.V., Thai, C.H., Le, H.T., Gan, B.S., Lee, J. and Nguyen-Xuan, H. (2014), "Isogeometric analysis of laminated composite plates based on a four-variable refined plate theory", Eng. Analysis Boundary Elements, 47, 68-81. https://doi.org/10.1016/j.enganabound.2014.05.013.
- Touratier, M. (1991), "An efficient standard plate theory", J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Yang, W., and He, D. (2018), "Bending, free vibration and buckling analyses of anisotropic layered micro-plates based on a new size-dependent model", Compos. Struct., 189, 137-147. https://doi.org/10.1016/j.compstruct.2017.09.057.
- Zenkour, A.M. (2004), "Buckling of fiber-reinforced viscoelastic composite plates using various plate theories", J. Eng. Math., 50(1), 75-93. https://doi.org/10.1023/B:ENGI.0000042123.94111.35.
Cited by
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051