Acknowledgement
This research is based upon work supported by Electric Power Research Institute (EPRI) under the project number 1-108781.
References
- Andrianov, I. V., Awrejcewicz, J. and Manevitch, L. I. (2013), Asymptotical Mechanics of Thin-Walled Structures, Springer Science and Business Media, Germany.
- Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479.
- Avazpour, L. (2018), "Fractional Ostrowski type inequalities for functions whose derivatives are prequasiinvex", J. Inequal. Spec. Funct., 9, 15-29.
- Avazpoura, L., Allahviranloob, T. and Islamc, S. (2016), "Uncertain Hermite-Hadamard inequality for functions with (s,m)-Godunova-Levin derivatives via fractional integral", J. Nonlinear Sci. Appl., 9(5), 3333-3347. http://dx.doi.org/10.22436/jnsa.009.05.119
- Bayat, M., Bayat, M., Kia, M., Ahmadi, H. R. and Pakar, I. (2018), "Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach", Geomech. Eng., 16(4), 355-361. http://dx.doi.org/10.12989/gae.2018.16.4.355
- Bayat, M., Pakar, I. and Cao, M. S. (2017), "Energy based approach for solving conservative nonlinear systems", Earthq. Struct., 13(2), 131-136. https://doi.org/10.12989/eas.2017.13.2.131.
- Bildik, N. and Konuralp, A. (2006), "The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations", J. Nonlinear Sci. Numeric. Simulation, 7(1), 65-70. https://doi.org/10.1515/IJNSNS.2006.7.1.65.
- Braghin, F., Mehdipour, I., Lecis, N. O. R. A. and Galassi, C. (2016), "Periodic substructure for multi-frequency energy harvesting with single piezoelectric patch", Proceedings of Active and Passive Smart Structures and Integrated Systems 2016, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, 2016, Las Vegas, Nevada, USA, April. https://doi.org/10.1117/12.2219547.
- Chin, C.-M., Nayfeh, A.H. (1996), "Bifurcation and chaos in externally excited circular cylindrical shells", J. Appl. Mech., 63(6),565-574. https://doi.org/10.1115/1.2823335.
- Ebrahimi, F. and Fardshad, R. E. (2018), "Dynamic modeling of nonlocal compositionally graded temperature-dependent beams", Adv. Aircraft Spacecraft Sci., 5(1), 141. http://dx.doi.org/10.12989/aas.2018.5.1.141.
- Errico, F., Franco, F., Ichchou, M., De Rosa, S. and Petrone, G. (2019), "An investigation on the vibrations of laminated shells under aeroacoustic loads using a WFE approach", Adv. Aircraft Spacecraft Sci., 6(6),463-479. http://dx.doi.org/10.12989/aas.2019.6.6.463.
- Evkin, A. Y. and Kalamkarov, A. L. (2001), "Analysis of large deflection equilibrium states of composite shells of revolution. Part 1. General model and singular perturbation analysis", J. Solids Struct., 38(50-51), 8961-8974. https://doi.org/10.1016/S0020-7683(01)00184-6.
- Filippov, S. B. (1999), Theory of Conjugated and Reinforced Shells, St. Petersburg State University, St. Petersburg, Russia. (In Russian).
- Ganji, D.D. and Azimi, M. (2012), "Application of max min approach and amplitude frequency formulation to nonlinear oscillation systems", UPB Scientific Bulletin, 74(3), 131-140.
- Ganji, D.D., Esmaeilpour, M. and Soleimani, S. (2010), "Approximate solutions to Van der Pol damped nonlinear oscillators by means of He's energy balance method", J. Comput. Math., 87(9), 2014-2023. https://doi.org/10.1080/00207160802562564.
- Gao, J., Huang, P. and Yao, W. (2017), "Analytical and numerical study of temperature stress in the bi-modulus thick cylinder", Struct. Eng. Mech., 64(1), 81-92. http://dx.doi.org/10.12989/sem.2017.64.1.081.
- Garcia-Saldana, J. D. and Gasull, A. (2013), "A theoretical basis for the harmonic balance method", J. Diff. Equations, 254(1), 67-80. https://doi.org/10.1016/j.jde.2012.09.011.
- Genesio, R. and Tesi, A. (1992), "Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems", Automatica, 28(3), 531-548. https://doi.org/10.1016/0005-1098(92)90177-H
- Grigolyuk E. I., Kabanov V.V. (1987), Stability of Shells, Nauka, Moscow, Russia. (in Russian).
- Hashemiparast, S. and Avazpour, L. (2008), "Applying Quadrature Rules with Multiple Nodes to Solving Integral Equations", AIP Conference Proceedings, 1048, 257. https://doi.org/10.1063/1.2990906.
- He, J. H. (2003), "Homotopy perturbation method: a new nonlinear analytical technique", Appl. Math. Comput., 135(1), 73-79. https://doi.org/10.1016/S0096-3003(01)00312-5.
- He, J. H. (2004), "He Chengtian's inequality and its applications", Appl. Math. Comput., 151(3), 887-891. https://doi.org/10.1016/S0096-3003(03)00531-9
- He, J. H. (2008), "Max-min approach to nonlinear oscillators", J. Nonlinear Sci. Numeric. Simulation, 9(2), 207-210. https://doi.org/10.1515/IJNSNS.2008.9.2.207.
- He, J. H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374(23), 2312-2314. http://doi.org/10.1016/j.physleta.2010.03.064.
- Hieu, D. V. (2018), "Postbuckling and free nonlinear vibration of microbeams based on nonlinear elastic foundation", Math. Problems Eng., https://doi.org/10.1155/2018/1031237.
- Javanmard, M., Bayat, M. and Ardakani, A. (2013), "Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation", Steel Compos. Struct, 15(4), 439-449. https://doi.org/10.12989/scs.2013.15.4.439.
- Khan, K., Patel, B.P. and Nath, Y. (2015), "Free and forced vibration characteristics of bimodular composite laminated circular cylindrical shells", Compos. Struct., 126, 386-397. https://doi.org/10.1016/j.compstruct.2015.02.022.
- Koval, L.R. (1974), "Effect of longitudinal resonance the parametric stability of an axially excited cylindrical shell", The J. Acoustical Soc. America, 55(1), 91-97. https://doi.org/10.1121/1.1928136.
- Liu, Y. and Chu, F. (2012), "Nonlinear vibrations of rotating thin circular cylindrical shell", Nonlinear Dynam., 67(2), 1467-1479. https://doi.org/10.1007/s11071-011-0082-7.
- Lockhart, D.F. (1979), "Dynamic buckling of a damped externally pressurized imperfect cylindrical shell", ASME J. Appl. Mech., 46, 372-377. https://doi.org/10.1115/1.3424537.
- Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 1-16. https://doi.org/10.12989/sem.2020.73.1.097.
- Mehdipour, I., Braghin, F., Lecis, N. O. R. A. and Galassi, C. (2016), "Analytical modeling and experimental verification of a S-shaped vibration energy harvester", ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers Digital Collection, USA. https://doi.org/10.1115/SMASIS2016-9120.
- Mohammadian, M. and Akbarzade, M. (2017), "Higher-order approximate analytical solutions to nonlinear oscillatory systems arising in engineering problems", Arch. Appl. Mech., 87(8), 1317-1332. https://doi.org/10.1007/s00419-017-1252-y.
- Mohyud-Din, S.T. and Noor, M.A. (2009), "Homotopy perturbation method for solving partial differential equations", Zeitschrift fur Naturforschung A, 64(3-4), 157-170. https://doi.org/10.1515/zna-2009-3-402.
- Pakar, I., Bayat, M. and Cveticanin, L. (2018), "Nonlinear vibration of unsymmetrical laminated composite beam on elastic foundation", Steel Compos. Struct., 26(4), 453-461. http://dx.doi.org/10.12989/scs.2018.26.4.453.
- Razzak, M. A. (2016), "A simple harmonic balance method for solving strongly nonlinear oscillators", J. Assoc. Arab Universities for Basic Appl. Sci., 21, 68-76. https://doi.org/10.1016/j.jaubas.2015.10.002.
- Sadeghzadeh, S. A. D. E. G. H. and Kabiri, A. (2016), "Application of higher order Hamiltonian approach to the nonlinear vibration of micro electro mechanical systems", Latin American J. Solids Struct., 13(3), 478-497. https://doi.org/10.1590/1679-78252557.
- Shokravi, M. (2018), "Forced vibration response in nanocomposite cylindrical shells-Based on strain gradient beam theory", Steel Compos. Struct., 28(3), 381-388. https://doi.org/10.12989/scs.2018.28.3.381.
- Von Wagner, U. and Lentz, L. (2016), "On some aspects of the dynamic behavior of the softening Duffing oscillator under harmonic excitation", Arch. Appl. Mech., 86(8), 1383-1390. https://doi.org/10.1007/s00419-016-1123-y.
- Zeng, D. Q. (2009), "Nonlinear oscillator with discontinuity by the max-min approach", Chaos, Solitons Fractals, 42(5), 2885-2889. https://doi.org/10.1016/j.chaos.2009.04.029.
- Zhang, D. and S. Wang (2018), "Nonlinear effect of tooth-slot transition on axial vibration, contact state and speed fluctuation in traveling wave ultrasonic motor", Proceedings of the Institution of Mech. Eng., Part C J. Mech. Eng. Sci. 232(19), 3424-3438. https://doi.org/10.1177/0954406217736551.