References
- Adhikari, B., and Singh, B. N. (2019), "Dynamic response of functionally graded plates resting on two-parameter-based elastic foundation model using a quasi-3D theory", Mech. Based Design Struct. Machines, 1-31. https://doi.org/10.1080/15397734.2018.1555965.
- Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107.
- Alibeigloo, A., and Alizadeh, M. (2015), "Static and free vibration analyses of functionally graded sandwich plates using state space differential quadrature method", J. Mech. Solids, 54, 252-266. https://doi.org/10.1016/j.euromechsol.2015.06.011.
- Attia, A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187.
- Berghouti, H., Adda Bedia, E.A. Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A., Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
- Carrera, E., Brischetto, S., Cinefra, M., and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
- Chakraverty, S., and Pradhan, K. K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005.
- Cui, D. and Hu, H. (2016), "Thermal buckling and natural vibration of a rectangular thin plate with in-plane stick-slip-stop boundaries", J. Vib. Control., 22(7), 1950-1966. https://doi.org/10.1177/1077546314546394.
- Daikh, A. A. (2019), "Temperature dependent vibration analysis of functionally graded sandwich plates resting on Winkler/Pasternak/Kerr foundation", Mater. Res. Express, 6(6), 065702. https://doi.org/10.1088/2053-1591/ab097b.
- Darilmaz, K. (2015), "Vibration analysis of functionally graded material (FGM) grid systems", Steel Compos. Struct., Int. J., 18(2), 395-408. https://doi.org/10.12989/scs.2015.18.2.395.
- Darilmaz, K., Aksoylu, M.G. and Durgun, Y. (2015), "Buckling analysis of functionally graded material grid systems", Struct. Eng. Mech., Int. J., 54(5), 877-890. https://doi.org/10.12989/sem.2015.54.5.87.
- Draiche, K., Bousahla, A. A., Tounsi, A., Alwabli, A. S., Tounsi, A., and Mahmoud, S. R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.36.
- Ebrahimi, F. (2013), "Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment", Mech. Adv. Mater. Struct., 20(10), 854-870. https://doi.org/10.1080/15376494.2012.677098.
- Ebrahimi, F., Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.34.
- El Meiche, N., Tounsi, A., Ziane, N., and Mechab, I. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004.
- Fazzolari, F. A. (2016), "Modal characteristics of P-and S-FGM plates with temperature-dependent materials in thermal environment", J. Thermal Stress., 39(7), 854-873. https://doi.org/10.1080/01495739.2016.1189772.
- Huang, X. L., Shen, H. S. (2004), "Nonlinear vibration and dynamic response of functionally graded plates in thermal environments". International Journal of Solids and Structures., 41(9), 2403-2427. https://doi.org/10.1016/j.ijsolstr.2003.11.012.
- Joshi, P. V., Jain, N. K., Ramtekkar, G. D., and Virdi, G. S. (2016), "Vibration and buckling analysis of partially cracked thin orthotropic rectangular plates in thermal environment", Thin Wall. Struct., 109, 143-158. https://doi.org/10.1016/j.tws.2016.09.020.
- Kant, T. (1993), "A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches", Compos. Struct., 23(4), 293-312. https://doi.org/10.1016/0263-8223(93)90230-N.
- Kant, T., and Swaminathan, K. (2001), "Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories", Journal of Sound and Vibration., 241(2), 319-327. https://doi.org/10.1006/jsvi.2000.3232.
- Kar, V.R., Panda, S.K. (2014), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., Int. J., 53(4), 661 - 679. https://doi.org/10.12989/sem.2015.53.4.661.
- Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
- Karami, B., Janghorban, M., Shahsavari, D., and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel and Compos. Struct, 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
- Karami, B., Janghorban, M., Tounsi, A. (2018b), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct, 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.20.
- Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
- Karami, B., Shahsavari, D., Janghorban, M., and Tounsi, A. (2019b), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
- Karami, B., Janghorban, M., and Tounsi, A. (2019c), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
- Karami, B., Janghorban, M. and Tounsi, A. (2019d), "On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
- Khalili, S. M. R., and Mohammadi, Y. (2012), "Free vibration analysis of sandwich plates with functionally graded face sheets and temperature-dependent material properties: A new approach", European J. Mech.-A/Solids, 35, 61-74. https://doi.org/10.1016/j.euromechsol.2012.01.003.
- Khiloun, M., Bousahla, A. A., Kaci, A., Bessaim, A., Tounsi, A., and Mahmoud, S. R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput, 1-15. https://doi.org/10.1007/s00366-019-00732-1.
- Kim, Y. W. (2005), "Temperature dependent vibration analysis of functionally graded rectangular plates", J. Sound Vib., 284(3-5), 531-549. https://doi.org/10.1016/j.jsv.2004.06.043.
- Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., Int. J., 55(5), 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001.
- Lashkari, M. J. and Rahmani, O. (2016), "Bending analysis of sandwich plates with composite face sheets and compliance functionally graded syntactic foam core", Proceedings of the Institution of Mechanical Engineers, Part C J. Mechanical Engineering Science, 230(20), 3606-3630. https://doi.org/10.1177/0954406215616417.
- Li, Q., Iu, V. P. and Kou, K. P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
- Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A., Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandwich Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577.
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel and Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
- Mehar, K., and Kumar Panda, S. (2018), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polymer Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.
- Neves, A. M. A., Ferreira, A. J. M., Carrera, E., Cinefra, M., Roque, C. M. C., Jorge, R. M. N. and Soares, C. M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B Eng., 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.
- Nguyen, T.K. (2015), "A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials", Int.J.Mech.Mater.Des., 11(2), 203-219. https://doi.org/10.1007/s10999-014-9260-3.
- Pandey, S., and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory", Europ. J. Mech. A Solids, 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001.
- Parida, S., and Mohanty, S. C. (2018), "Free Vibration Analysis of Functionally Graded Skew Plate in Thermal Environment Using Higher Order Theory", International Journal of Applied Mechanics, 10(01), 1850007. https://doi.org/10.1142/S1758825118500072.
- Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Techol., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x.
- Taleb, O., Houari, M.S.A ., Bessaim, A., Tounsi, A and Mahmoud, S.R. (2018), "A new plate model for vibration response of advanced composite plates in thermal environment", Struct. Eng. Mech.., Int. J., 18(3), 693-709. https://doi.org/10.12989/sem.2018.67.4.369.
- Thai, H. T., and Choi, D. H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct, 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011
- Tu, T. M., Quoc, T. H., and Van Long, N. (2019), "Vibration analysis of functionally graded plates using the eight-unknown higher order shear deformation theory in thermal environments", Aerosp. Sci. Technol., 84, 698-711. https://doi.org/10.1016/j.ast.2018.11.010.
- Van Long, N., Quoc, T. H., and Tu, T. M. (2016), "Bending and free vibration analysis of functionally graded plates using new eight-unknown shear deformation theory by finite-element method", J. Adv. Struct. Eng., 8(4), 391-399. https://doi.org/10.1007/s40091-016-0140-y.
- Wang, Y. Q. and Zu, J. W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
- Wattanasakulpong, N., Prusty, G. B., and Kelly, D. W. (2013), "Free and forced vibration analysis using improved third-order shear deformation theory for functionally graded plates under high temperature loading", J. Sandwich Struct. Mater., 15(5), 583-606. https://doi.org/10.1177/1099636213495751.
- Yaghoobi, H., and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: An analytical approach", Meccanica, 48(8), 2019-2035. https://doi.org/10.1007/s11012-013-9720-0.
- Yang, J., Kitipornchai, S., and Liew, K. M. (2003), "Large amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates", Comput. Methods Appl. Mech. Eng., 192(35-36), 3861-3885. https://doi.org/10.1016/S0045-7825(03)00387-6.
- Youzera, H., Meftah, S.A., and Daya, E.M. (2017), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", J. Comput. Nonlinear Dynam., 12(5). https://doi.org/10.1115/1.4036914.
- Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F., Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389
- Zaoui, F. Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations" Compos. Part B Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
- Zenkour, A. M., and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct, 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012.
Cited by
- On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory vol.279, 2022, https://doi.org/10.1016/j.compstruct.2021.114715