DOI QR코드

DOI QR Code

Dual-phase-lag model on microstretch thermoelastic medium with diffusion under the influence of gravity and laser pulse

  • Othman, Mohamed I.A. (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Abd-Elaziz, Elsayed M. (Ministry of Higher Education, Zagazig Higher Institute of Eng. & Tech.) ;
  • Mohamed, Ibrahim E.A. (Department of Mathematics, Faculty of Science, Zagazig University)
  • Received : 2019.10.08
  • Accepted : 2020.02.10
  • Published : 2020.07.25

Abstract

This investigation is to study the effect of gravitational field and diffusion on a microstretch thermoelastic medium heating by a non-Gaussian laser beam. The problem was studied in the context of the dual-phase-lag model. The normal mode analysis is used to solve the problem to obtain the exact expressions for the non-dimensional displacement components, the micro-rotation, the stresses, and the temperature distribution. The effect of time parameter, heat flux parameter and gravity response of three theories of thermoelasticity i.e. dual-phase-lag model (DPL), Lord and Shulman theory (L-S) and coupled theory (CT) on these quantities have been depicted graphically for a particular model.

Keywords

Acknowledgement

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

  1. Abdallah, I.A. (2009), "Dual phase lag heat conduction and thermoelastic properties of a semi-infinite medium induced by ultra-short pulsed laser", Progress Phys., 3, 60-63.
  2. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of anti-symmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concr., 24(6), 489-498. https://doi.org/ 10.12989/cac.2019.24.6.489
  3. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/ https://doi.org/10.12989/sem.2019.71.5.485
  4. Al-Nimr, M.A. and Al-Huniti, N.S. (2000), "Transient thermal stresses in a thin elastic plate due to a rapid dual-phase-lag heating", J. Therm. Stress., 23(8), 731-746. https://doi.org/10.1080/01495730050192383
  5. Al-Qahtani, H.M. and Datta, S.K. (2008), "Laser-generalized thermoelastic waves in an anisotropic infinite plate: Exact analysis", J. Therm. Stress., 31(6), 569-583. https://doi.org/10.1080/01495730801978380.
  6. Biot, M.A. (1956), "Thermoelasticity and irreversible thermo-dynamics", J. Appl. Phys., 27, 240-253. https://doi.org/10.1063/1.1722351.
  7. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  8. Chen, J.K., Beraun, J.E. and Tzou, D.Y. (2002), "Thermo-mechanical response of metals heated by ultra-short pulsed lasers", J. Therm. Stress., 25(6), 539-558. https://doi.org/10.1080/01495730290074289.
  9. Eringen, A.C. (1999), Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, New York.
  10. Eringen, A.C. (1984), "Plane wave in nonlocal micropolar elasticity", Int. J. Eng. Sci., 22(8-10), 1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5.
  11. Gawinecki, J.A., Kacprzyk, P. and Bar-Yoseph, P. (2000), "Initial boundary value problem for some coupled nonlinear parabolic system of partial differential equations appearing in thermoelastic diffusion in solid body", J. Anal. Its Appl., 19, 121-130.
  12. Gawinecki, J.A. and Szymaniec, A. (2002), "Global solution of the Cauchy problem in nonlinear thermoelastic diffusion in solid body", Proc. Appl. Math. Mech. (PAMM), 1, 446-447. https://doi.org/10.1002/1617-7061(200203)1:1<446::AID-PAMM446>3.0.CO;2-#
  13. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2, 1-7. http://dx.doi.org/10.1007/BF00045689.
  14. Green, A.E. and Laws, N. (1972), "On the entropy production inequality", Archive Rational Mechanics Analysis, 45(1), 47-53. https://doi.org/10.1007/BF00253395
  15. Lee, Y.M. and Tsai, T.W. (2008), "Effect of interfacial contact conductance on thermoelastic response in a two layered material heated by ultra-fast pulse-laser", J. Phys. D: Appl. Phys., 41(4), 045308. https://doi.org/10.1088/0022-3727/41/4/045308
  16. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. the Mech. Phys. Solids, 15(4), 299-309. https://doi.org/10.1016/0022-5096 (67)90024-5.
  17. Marin M., Othman, M.I.A., Vlase, S. and Codarcea-Munteanu, L., (2019), "Thermoelasticity of initially stressed bodies with voids. A domain of influence", Symmetry, 11(4), 573-584. doi:10.3390/sym1104057.
  18. Marin, M., Baleanu, D. and Vlase. S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies",Struct EngMech, 61(3), 381-387. https://doi.org/ https://doi.org/10.12989/sem.2017.61.3.381.
  19. Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063.
  20. Mahmoudi, A., Benyoucef, S. Tounsi, A., Benachour, A. Bedia, A.E. and Mahmoud, SR (2019), "A refined quasi-3D shear deformation theory for thermomechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandwich Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577.
  21. Nowacki, W. (1974), "Dynamical problems of thermo-diffusion in solids I", Bull Acad Pol Sci Ser Sci Tech., 22, 55-64.
  22. Nowacki, W. (1976), "Dynamical problems of thermo-diffusion in solids", Eng. Fracture Mech., 8, 261-266. https://doi.org/10.1016/0013-7944(76)90091-6
  23. Othman, M.I.A., Hasona, W.M. and Mansour, N.T. (2015), "The influence of gravitational field on generalized thermoelasticity with two-temperature under three-phase-lag model", Comput. Mater. Continua, 45(3), 203-219.
  24. Othman, M.I.A. and Abd-Elaziz, E.M. (2015), "The effect of thermal loading due to laser pulse on generalized thermoelastic medium with voids in dual phase lag model", J. Therm. Stress., 38(9), 1068-1082. https://doi.org/10.1080/01495730290074289.
  25. Othman, M.I.A. and Abd-Elaziz, E.M. (2017), "Effect of rotation and gravitational on a micropolar magneto-thermoelastic medium with dual-phase-lag model", Microsystem Technologies, 23, 4979-4987. https://doi.org/10.1007/s00542-017-3295-y.
  26. Othman, M.I.A. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous media under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
  27. Ozisik, M.N. and Tzou, D.Y. (1994), "On the wave theory of heat conduction", J. Heat Transfer (ASME), 116(3), 526-535. https://doi.org/10.1115/1.2910903.
  28. Said, S.M. and Othman, M.I.A. (2016), "Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model", Struct. Eng. Mech., 57(2), 201-220. https://doi.org/10.1080/17455030.2019.1637552.
  29. Sharma, N., Kumar, R. and Ram, P. (2008), "Plane strain deformation in generalized thermoelastic diffusion", Int. J. Thermophys., 29(4), 1503-1522. https://doi.org/10.1007/s10765-008-0435-8
  30. Sharma, V. and Kumar, S. (2016), "Influence of microstructure, heterogeneity and internal friction on SH waves propagation in a viscoelastic layer overlying a couple stress substrate", Struct Eng Mech, 57(4), 703-716. https://doi.org/ 10.12989/sem.2016.57.4.703
  31. Singh, B. (2005), "Reflection of P and SV waves from free surface of an elastic soild with generalized thermodiffusion", J. Earth System Sci., 114(2), 159- 168. https://doi.org/10.1007/BF02702017.
  32. Tzou, D.Y. (1995a), "Experimental support for the lagging behavior in heat propagation", J. Thermophys. Heat Transfer, 9(4), 686-693. https://doi.org/10.2514/3.725
  33. Tzou, D.Y. (1995b), "A unified approach for heat conduction from macro to micro scales", J. Heat Transfer (ASME) 117(1), 8-16. doi: https://doi.org/10.1115/1.2822329
  34. Tzou, D.Y. (1997), Macro-to Microscale Heat Transfer: The Lagging Behavior, Taylor and Francis, New York, USA.
  35. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389

Cited by

  1. The effect of multi-phase-lag and Coriolis acceleration on a fiber-reinforced isotropic thermoelastic medium vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.125