DOI QR코드

DOI QR Code

디지털 리터러시 역량의 자기진단 평가도구 개발

Development of Self Assessment Tool for Digital Literacy Competence

  • 양길석 (가톨릭대학교 교직과) ;
  • 서수현 (광주교육대학교 국어교육과) ;
  • 옥현진 (이화여자대학교 초등교육과)
  • Yang, Kilseok (Department of Teacher Education Program, The Catholic University of Korea) ;
  • Seo, Soohyun (Department of Korean Language Education, Gwangju National University of Education) ;
  • Ok, Hyounjin (Department of Elementary Education, Ewha Womans University)
  • 투고 : 2020.02.04
  • 심사 : 2020.07.20
  • 발행 : 2020.07.28

초록

이 연구에서는 디지털 리터러시 역량이 현재와 미래사회를 대비한 핵심역량의 하나라는 판단 하에 이를 자가진단하거나 교육용 프로그램에서 효과성 검증의 도구로 활용할 수 있도록 디지털 리터러시 역량의 자기보고식 평가도구를 개발하였다. 디지털 리터러시 역량에 대한 선행연구를 토대로 2개 영역, 8개 구인, 총 45개 문항으로 구성된 도구를 구성하였다. 약 3천 명의 중학생을 대상으로 평가를 실시한 후 적합성 판단을 위해 탐색적 요인분석과 확인적 요인분석을 실시하였으며, 결과는 전반적으로 만족할 만한 수준이었다. 이 연구에서 개발한 평가도구는 일차적으로 초중등학교 및 성인교육 분야에서 활용 가능하다. 이 도구를 토대로 후속 연구를 통해 누구나 온라인으로 접근 가능하도록 시스템을 개발하고 축적된 데이터를 통해 각 개인의 자기계발에 필요한 교육 정보를 제공한다면 우리 국민들의 디지털 리터러시 역량 향상에 크게 기여할 것으로 본다.

This study aimed to develop a self-reporting assessment tool for digital literacy competence to use it as a tool for self-diagnosis or effectiveness verification in educational programs, considering that digital literacy competence is one of the core competencies for the present and future society. Based on the previous research on digital literacy competence, the tool was developed with 45 question items of 2 areas and 8 factors. The results of an exploratory factor analysis and confirmatory factor analysis conducted to determine suitability were generally satisfactory based on the assessment data from about 3,000 middle school students. The assessment tools developed in this study are primarily applicable to primary and secondary school and adult education. In future research, if the system is developed to be accessible to anyone online based on this tool, and the accumulated data provide educational information for each individual's self-development, it will greatly contribute to improving the digital literacy competence of the people.

키워드

참고문헌

  1. R. Dobbs, J. Manyika, & J. Woetzel. (2015). No ordinary disruption. New York: PublicAffair.
  2. K. Schwab. (2016). The fourth industrial revolution. Geneva: World Economic Forum.
  3. OECD (2019). OECD future of education and skills 2030. Paris: OECD. DOI: 10.1016/J.SAPHARM.2017.02.002.
  4. Department for Education (2018). Essential digital skills framework. UK: Department for Education.
  5. M. McLuhan. (2009). Understanding media: The extension of man. New York: Routledge.
  6. K. So. (2007). 'Competency' in the context of schooling. Journal of Curriculum Studies, 25(3), 1-22. DOI : 10.15708/kscs.25.3.200709.001001
  7. C. Lee. (2019). On the virtue of human communication in ultra-digital, AI society. Journal of Education & Culture, 25(1), 681-697. DOI : 10.24159/joec.2019.25.1.681
  8. H. Ok et al. (2016). A study of developing and validating an assessment of digital literacy attitudes. Korean Language Education, 152, 251-284.
  9. M. Rokeach. (1973). The nature of human values. New York: Free Press.
  10. A. Bandura. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.
  11. M. Tsai & C. Tsai. (2003). Information searching strategies in web-based science learning: The role of Internet self-efficacy. Innovations in Education and Teaching International, 40(1), 43-50. DOI: 10.1080/1355800032000038822
  12. K. Spangler. (1983). Reading interests vs. reading preferences: Using the research. Reading Teacher, 36, 876-878.
  13. J. Zimmerman. (2000). Attaining self-regulation. In M. Boekaerts, P. Pintrich and M. Zeidner (Eds.), Handbook of self-regulation(pp. 13-39). San Diego: Academic Press.
  14. H. Jenkins. (2006). Confronting the challenges of participatory culture: Media education for the 21st century. Chicago: MacArthur Foundation.
  15. S. Boulianne. (2009). Does Internet use affect engagement?: A meta-analysis of research. Political Communication, 26(2), 193-211. DOI: 10.1080/10584600902854363
  16. M. Ribble. (2015). Digital citizenship in schools. Washington, DC: International Society for Technology in Education.
  17. S. Hong. (2000). The criteria for selecting appropriate fit indices in structural equation modeling and their rationales. Korean Journal of Clinical Psychology, 19(1), 161-177.
  18. M. Brown & R. Cudeck. (1993). Alternative ways of assessing model fit. In K. Bollen & J. Long (Eds.), Testing structural equation models(pp. 136-162). Newbury Park, CA: Sage.