참고문헌
- Al, E.A.F.M.H. (1992), "Metode si procedee de izolare a fundatiilor la actiuni dinamice", Ph.D. Dissertation, Tehnica Cluj-Napoca, Romania, (in Romanian).
- Barghian M. and Shahabi A.B. (2007), "A new approach to pendulum base isolation", Struct. Control Hlth Monit., 14, 177-85. https://doi.org/10.1002/stc.115.
- Chen, P.C. and Wang, S.J. (2016), "Improved control performance of sloped rolling-type isolation devices using embedded electromagnets", Struct. Control Hlth. Monit., 24(1), 1853. https://doi.org/10.1002/stc.1853.
- Chopra, A.K., Clough, D.P. and Clough, R.W. (1973), "Earthquake resistance of buildings with a 'soft' first storey", Earthq. Eng. Struct. Dyn., 1, 347-355. https://doi.org/10.1002/eqe.4290010405.
- Eisenberg, J.M., Melentyev, A.M., Smirnov, V.I. and Nemykin, A.N. (1992). "Applications of seismic isolation in the USSR". In the Proc. 10th WCEE, Madrid
- Eisenberg, J.М. (1983). Сейсмоизоляция и адаптивные системы сейсмозащиты. Изд-во" Наука". (in Russian).
- Fenz, D.M. and Constantinou, M.C. (2006), "Behaviour of the double concave Friction Pendulum bearing", Earthq. Eng. Struct. Dyn., 35, 1403-24. https://doi.org/10.1002/eqe.589.
- Fenz, D.M. and Constantinou, M.C. (2008a), "Modeling triple friction pendulum bearings for response-history analysis", Earthq. Spectra, 24, 1011-1128. https://doi.org/10.1193/1.2982531.
- Fenz, D.M. and Constantinou, M.C. (2008b), "Spherical sliding isolation bearings with adaptive behavior: Theory," Earthq. Eng. Struct. Dyn., 37, 163-183. https://doi.org/10.1002/eqe.750.
- Foutch, D.A., Gambill, J.B. and Garza-Tamez, F. (1993). "Investigation of a seismic base isolation system based on pendular action", University of Illinois Engineering Experiment Station. College of Engineering. University of Illinois at Urbana-Champaign.
- Han, X. and Warn, G.P. (2014), "Mechanistic model for simulating critical behavior in elastomeric bearings", J. Struct. Eng. 141(5), 40. https://doi.org/10.1061/(ASCE)St.1943-541x.0001084.
- Hosseini, M. and Farsangi, E.N. (2012), "Telescopic columns as a new base isolation system for vibration control of high-rise buildings", Earthq. Struct., 3(6), 853-867. https://doi.org/10.12989/eas.2012.3.6.853.
- Ismail, M. (2016), "Novel hexapod-based unidirectional testing and FEM analysis of the RNC isolator", Struct. Control Hlth. Monit, 23, 894-922. https://doi.org/10.1002/stc.1817.
- Ismail, M., Rodellar, J. and Ikhouane, F. (2009), "Performance of structure-equipment systems with a novel roll-n-cage isolation bearing", Comput. Struct., 87. 1631-1646, https://doi.org/10.1016/j.compstruc.2009.09.006.
- Ismail, M., Rodellar, J. and Ikhouane, F. (2012), "Seismic protection of low- to moderate-mass buildings using RNC isolator", Struct. Control Health Monit., 19, 22-42. https://doi.org/10.1002/stc.421.
- Jangid R.S. (2000), "Stochastic seismic response of structure isolated by rolling rods", Eng. Struct., 22, 937-946. https://doi.org/10.1016/S0141-0296(99)00041-3.
- Jangid, R.S. and Londhe, Y.B. (1998), "Effectiveness of elliptical rolling rods for base isolation", J. Struct. Eng. (ASCE), 124, 469-472. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:4(469).
- Karayel, V., Yuksel, E., Gokce, T. and Sahin, F. (2017), "Spring tube braces for seismic isolation of buildings", Earthq. Eng. Eng. Vib., 16, 219-31. https://doi.org/10.1007/s11803-017-0378-9.
- Kikuchi, M., Nakamura, T. and Aiken, I.D. (2010), "Three-dimensional analysis for square seismic isolation bearings under large shear deformations and high axial loads", Earthq. Eng. Struct. Dyn. 39, 1513-1531. https://doi.org/10.1002/eqe.1042.
- Kumar, M., Whittaker, A.S. and Constantinou, M.C. (2014), "An advanced numerical model of elastomeric seismic isolation bearings", Earthq. Eng., Struct., Dyn., 43(13), 1955-1974. https://doi.org/10.1002/Eqe.2431.
- Lin, T.W., Chern, C.C. and Hone, C.C. (1995), "Experimental study of base isolation by free rolling rods", Earthq. Eng. Struct.Dyn., 24. 1645-1650 https://doi.org/10.1002/eqe.4290241207.
- Lu, L. Y.and Yang, Y.B. (1997), "Dynamic response of equipment in structures with sliding support", Earthq. Eng. Struct. Dyn., 26(1), 61-76. https://doi.org/10.1002/(SICI)1096-9845(199701)26:1.
- Mokha, A., Constantinou, M. and Reinhorn, A. (1990), "Teflon bearings in base isolation I: Testing", J. Struct. Eng., 116, 438-54. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(438).
- Mostaghel N. and M. Khodaverdian (1987), "Dynamics of resilient-friction base isolator (R-FBI)", Earthq. Eng. Struct. Dyn., 15, 379-90. https://doi.org/10.1002/eqe.4290150307.
- Nakamura, Y., Saruta, M., Wada, A., Takeuchi, T., Hikone, S. and Takahashi, T. (2011), "Development of the core-suspended isolation system", Earthq. Eng. Struct. Dyn., 40, 429-447. https://doi.org/10.1002/eqe.1036.
- Nanda, R.P., Agarwal, P. and Shrikhande, M. (2012) "Suitable friction sliding materials for base isolation of masonry buildings", Shock Vib., 19. 1327-1339. http://dx.doi.org/10.1155/2012/106436.
- Newmark, N. (1971). "Rosenblueth, "Fundamentals of Earthquake Engineering", In: Prentice Hall, Eaglewood Cliffs, New Jersey.
- Ou, Y.C., Song, J. and Lee, G.C. (2010), "A parametric study of seismic behavior of roller seismic isolation bearings for highway bridges", Earthq. Eng. Struct. Dyn. 39, 541-559. https://doi.org/10.1002/eqe.958.
- Pranesh M. and Ravi S. (2002), "Earthquake resistant design of structures using the variable frequency pendulum isolator", J. Struct. Eng., 128(7), 870-880. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(870).
- Pranesh M. and Sinha R. (2000), "VFPI: An isolation device for aseismic design", Earthq. Eng. Struct. Dyn., 29(5), 603-627. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5.
- Rawat, A., Ummer, N. and Matsagar, V. (2018), "Performance of bi-directional elliptical rolling rods for base isolation of buildings under near-fault earthquakes", Advan. Struct. Eng., 21(5), 675-693. https://doi.org/10.1177/1369433217726896.
- Robinson, W.H. (1982), "Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes", Earthq. Eng. Struct. Dyn. 10, 593-604. https://doi.org/10.1002/eqe.4290100408.
- Robinson, W.H. and Tucker, A.G. (1977), "A lead-rubber shear damper", Bull. N. Z. Natl. Soc. Earthq. Eng. 3, 93-101.
- Shahabi, A.B., Ahari, G.Z. and Barghian, M. (2019), "Suspended columns for seismic isolation in structures (SCSI): A preliminary analytical study", Earthq. Struct., 16(6), 743-755. https://doi.org/10.12989/eas.2019.16.6.743.
- Warn, G.P., Whittaker, A.S. and Constantinou, M.C. (2007), "Vertical stiffness of elastomeric and lead-rubber seismic isolation bearings", J, Struct, Eng, 133. 1227-1236. http://dx.doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1227).
- Xiong, W., Zhang, S.J., Jiang, L.Z. and Li, Y.Z. (2017), "Introduction of the convex friction system (CFS) for seismic isolation", Struct, Cont. Hlth. Monit., 24(1), 1861. https://doi.org/10.1002/stc.1861.
- Xiong, W., Zhang, S.J., Jiang, L.Z. and Li, Y.Z. (2018), "The multangular-pyramid concave friction system (MPCFS) for seismic isolation: A preliminary numerical study", Eng. Struct., 160, 383-394. https://doi.org/10.1016/j.engstruct.2017.12.045.
- Yamamoto, S., Kikuchi, M., Ueda, M. and Aiken, I.D. (2009), "A mechanical model for elastomeric seismic isolation bearings including the influence of axial load", Earthq. Eng., Struct. Dyn., 38, 157-180. https://doi.org/10.1002/eqe.847.
- Zayas, V.A., Low, S.S. and Mahin, S.A. (1990), "A simple pendulum technique for achieving seismic isolation", Earthq. Spectra, 6(2), 317-33. https://doi.org/10.1193%2F1.1585573. https://doi.org/10.1193/1.1585573