DOI QR코드

DOI QR Code

Nonlinear aerostatic analysis of long-span suspension bridge by Element free Galerkin method

  • Received : 2018.09.14
  • Accepted : 2019.05.30
  • Published : 2020.07.25

Abstract

The aerostatic stability analysis of a long-span suspension bridge by the Element-free Galerkin (EFG) method is presented in this paper. Nonlinear effects due to wind structure interactions should be taken into account in determining the aerostatic behavior of long-span suspension bridges. The EFG method is applied to investigate torsional divergence of suspension bridges, based on both the three components of wind loads and nonlinearities of structural geometric. Since EFG methods, which are based on moving least-square (MLS) interpolation, require only nodal data, the description of the geometry of bridge structure and boundaries consist of defining a set of nodes. A numerical example involving the three-dimensional EFG model of a suspension bridge with a span length of 888m is presented to illustrate the performance and potential of this method. The results indicate that presented method can effectively be applied for modeling suspension bridge structure and the computed results obtained using present modeling strategy for nonlinear suspension bridge structure under wind flow are encouragingly acceptable.

Keywords

Acknowledgement

The authors would like to express their personal thanks to Khajeh Nasir Toosi University for supporting this research work.

References

  1. Arena, A., Lacarbonara, W. and Marzocca, P. (2016), "Post-critical behavior of suspension bridges under nonlinear aerodynamic loading", J. Comput. Nonlinear Dyn., 11(1), 011005. https://doi.org/10.1115/1.4030040.
  2. Arena, A., Lacarbonara, W., Valentine, D. and Marzocca, P. (2014), "Aeroelastic behavior of long-span suspension bridges under arbitrary wind profiles", J. Flu. Struct., 50, 105-119. https://doi.org/10.1016/j.jfluidstructs.2014.06.018.
  3. Arzoumanidis, S.G. and Bieniek, M. (1985), "Finite element analysis of suspension bridges", Comput. Struct., 21(6), 1237-1253. https://doi.org/10.1016/0045-7949(85)90178-6.
  4. Bathe, K.J. (2006), "Finite element procedures", Klaus-Jurgen Bathe.
  5. Boonyapinyo, V., Lauhatanon, Y. and Lukkunaprasit, P. (2006), "Nonlinear aerostatic stability analysis of suspension bridges", Eng. Struct., 28(5), 793-803. https://doi.org/10.1016/j.engstruct.2005.10.008.
  6. Cheng, J. (2000), "Study on nonlinear aerostatic stability of cablesupported bridges", Ph. D. Dissertation, Tongji University, Shanghai, China.
  7. Cheng, J., Jiang, J.J. and Xiao, R.C. (2003), "Aerostatic stability analysis of suspension bridges under parametric uncertainty", Eng. Struct., 25(13), 1675-1684. https://doi.org/10.1016/S0141-0296(03)00146-9.
  8. Cheng, J., Jiang, J.J., Xiao, R.C. and Xiang, H.F. (2002), "Advanced aerostatic stability analysis of cable-stayed bridges using finite-element method", Comput. Struct., 80(13), 1145-1158. https://doi.org/10.1016/S0045-7949(02)00079-2.
  9. Cheng, J., Jiang, J.J., Xiao, R.C. and Xiang, H.F. (2002), "Nonlinear aerostatic stability analysis of Jiang Yin suspension bridge", Eng. Struct., 24(6), 773-781. https://doi.org/10.1016/S0141-0296(02)00006-8.
  10. Cheng, J., Xiao, R.C., Xiang, H.F. and Jiang, J.J. (2003), "NASAB: a finite element software for the nonlinear aerostatic stability analysis of cable-supported bridges", Adv. Eng. Softw., 34(5), 287-296. https://doi.org/10.1016/S0965-9978(03)00010-3.
  11. Diana, G., Fiammenghi, G., Belloli, M. and Rocchi, D. (2013), "Wind tunnel tests and numerical approach for long span bridges: the Messina bridge", J. Wind Eng. Ind. Aerod., 122, 38-49. https://doi.org/10.1016/j.jweia.2013.07.012
  12. Diana, G., Rocchi, D. and Belloli, M. (2015), "Wind tunnel: a fundamental tool for long-span bridge design", Struct. Infrastruct. Eng., 11(4), 533-555. https://doi.org/10.1016/j.jweia.2013.07.012.
  13. Duan, Y., Xu, Y., Fei, Q., Wong, K., Chan, K., Ni, Y. and Ng, C. (2011), "Advanced finite element model of Tsing Ma Bridge for structural health monitoring", Int. J. Struct. Stab. Dyn., 11(02), 313-344. https://doi.org/10.1142/S0219455411004117.
  14. Ge, Y., Xia, J., Zhao, L. and Zhao, S. (2018), "Full aeroelastic model testing for examining wind-induced vibration of a 5,000 m spanned suspension bridge", Front. Built Environ., 4, 20. https://doi.org/10.3389/fbuil.2018.00020.
  15. Hirai, A., Okauchi, I., Ito, M. and Miyata, T. (1967), "Studies on the critical wind velocity for suspension bridges", The Proceedings of the International Research Seminar on Wind Effects on Buildings and Structures, University of Toronto Press Ontario, Canada, 81-103.
  16. Hong, A.L., Ubertini, F. and Betti, R. (2011), "Wind analysis of a suspension bridge: identification and finite-element model simulation", J. Struct. Eng., 137(1), 133-142. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000279.
  17. Jayaraman, H. and Knudson, W. (1981), "A curved element for the analysis of cable structures", Comput. Struct., 14(3-4), 325-333. https://doi.org/10.1016/0045-7949(81)90016-X.
  18. Kilic, S., Raatschen, H.J., Körfgen, B., Apaydin, N. and Astaneh-Asl, A. (2017), "FE model of the Fatih Sultan Mehmet Suspension Bridge using thin shell finite elements", Arab. J. Sci. Eng., 42(3), 1103-1116. https://doi.org/10.1007/s13369-016-2316-y
  19. Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37(155), 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1.
  20. Liu, G.R. and Gu, Y.T. (2010), "An Introduction to Meshfree Methods and Their Programming", Springer Publishing Company, Incorporated.
  21. Mattiasson, K. (1981), "Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals", Int. J. Numer. Meth. Eng., 17(1), 145-153. https://doi.org/10.1002/nme.1620170113.
  22. Petrini, F., Giuliano, F. and Bontempi, F. (2007), "Comparison of time domain techniques for the evaluation of the response and the stability in long span suspension bridges", Comput. Struct., 85(11-14), 1032-1048. https://doi.org/10.1016/j.compstruc.2006.11.015.
  23. Selvam, R.P., Govindaswamy, S. and Bosch, H. (2002), "Aeroelastic analysis of bridges using FEM and moving grids", Wind Struct., 5(2_3_4), 257-266. https://doi.org/10.12989/was.2002.5.2_3_4.257.
  24. Xiang, H., Lin, Z., Bao, W., Chen, A. and Gu, M. (1996), "Wind resistant design guidebook for highway bridges", People's Communication Press, Beijing.
  25. Zhang, W.M., Ge, Y.J. and Levitan, M.L. (2013), "A method for nonlinear aerostatic stability analysis of long-span suspension bridges under yaw wind", Wind Struct., 17(5), 553-564. https://doi.org/10.12989/was.2013.17.5.553.
  26. Zhang, X., Xiang, H. and Sun, B. (2002), "Nonlinear aerostatic and aerodynamic analysis of long-span suspension bridges considering wind-structure interactions", J. Wind Eng. Indus. Aerod., 90(9), 1065-1080. https://doi.org/10.1016/S0167-6105(02)00251-9.
  27. Zhang, X.J. (2008), "Wind stability of three-tower suspension bridges", Wind Struct., 11(4), 341-344. https://doi.org/10.12989/was.2008.11.4.341.
  28. Zhang, X.J. (2011), "Investigation on the wind-induced instability of long-span suspension bridges with 3D cable system", Wind Struct., 14(3), 209-220. https://doi.org/10.12989/was.2011.14.3.209.