참고문헌
- Kodama, H., Automatic method for fabricating a three-dimensional plastic model with photohardening polymer. Rev. Sci. Instrum., 52 [11], 1770-73 (1981). https://doi.org/10.1063/1.1136492
- Patel, D. K.; Sakhaei, A. H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S., Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Adv. Mater., 29 [15], 1606000 (2017). https://doi.org/10.1002/adma.201606000
- Hull, C. W. Apparatus for production of threedimensional objects by stereolithography. US 4,575,330, 1986.
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y., 3D printing of ceramics: A review. J. Eur. Ceram. Soc., 39 [4], 661-87 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
- Hwa, L. C.; Rajoo, S.; Noor, A. M.; Ahmad, N.; Uday, M. B., Recent advances in 3D printing of porous ceramics: A review. Curr. Opin. Solid State Mater. Sci., 21 [6], 323-47 (2017). https://doi.org/10.1016/j.cossms.2017.08.002
- Bae, C.-J.; Ramachandran, A.; Chung, K.; Park, S., Ceramic Stereolithography: Additive Manufacturing for 3D Complex Ceramic Structures. J. Korean Ceram. Soc, 54 [6], 470-77 (2017). https://doi.org/10.4191/kcers.2017.54.6.12
- Marcus, H. L.; Beaman, J. J.; Barlow, J. W.; Bourell, D. L., Solid freeform fabrication. Powder processing. Am. Ceram. Soc. Bull., 69 [6], 1030-31 (1990).
- Sachs, E.; Cima, M.; Cornie, J., Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model. CIRP Annals, 39 [1], 201-04 (1990). https://doi.org/10.1016/S0007-8506(07)61035-X
- Griffith, M. L.; Halloran, J. W. In Ultraviolet curable ceramic suspensions for stereolithography of ceramics, American Society of Mechanical Engineers, Production Engineering Division (Publication) PED, pp. 529-34 (1994).
- Griffith, M. L.; Halloran, J. W., Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc., 79 [10], 2601-08 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb09022.x
- Brady, G. A.; Halloran, J. W., Stereolithography of ceramic suspensions. Rapid Prototyping Journal, 3 [2], 61-65 (1997). https://doi.org/10.1108/13552549710176680
- Badev, A.; Abouliatim, Y.; Chartier, T.; Lecamp, L.; Lebaudy, P.; Chaput, C.; Delage, C., Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography. J. Photochem. Photobiol. A: Chem., 222 [1], 117-22 (2011). https://doi.org/10.1016/j.jphotochem.2011.05.010
- Zanchetta, E.; Cattaldo, M.; Franchin, G.; Schwentenwein, M.; Homa, J.; Brusatin, G.; Colombo, P., Stereolithography of SiOC Ceramic Microcomponents. Adv. Mater., 28 [2], 370-76 (2016). https://doi.org/10.1002/adma.201503470
- Felzmann, R.; Gruber, S.; Mitteramskogler, G.; Tesavibul, P.; Boccaccini, A. R.; Liska, R.; Stampfl, J., Lithography-Based Additive Manufacturing of Cellular Ceramic Structures. Adv. Eng. Mater., 14 [12], 1052-58 (2012). https://doi.org/10.1002/adem.201200010
- 송경은, 깨지기 쉬운 세라믹, 3D프린터로 한번에 인쇄한다. 동아사이언스 April 24, 2017.
- Duan, B.; Wang, M.; Zhou, W. Y.; Cheung, W. L.; Li, Z. Y.; Lu, W. W., Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater., 6 [12], 4495-505 (2010). https://doi.org/10.1016/j.actbio.2010.06.024
- Sing Swee, L., Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyping Journal, 23 [3], 611-23 (2017). https://doi.org/10.1108/RPJ-11-2015-0178
- Subramanian, K., Selective laser sintering of alumina with polymer binders. Rapid Prototyping Journal, 1 [2], 24-35 (1995). https://doi.org/10.1108/13552549510086844
- Tang, H.-H.; Chiu, M.-L.; Yen, H.-C., Slurrybased selective laser sintering of polymercoated ceramic powders to fabricate high strength alumina parts. J. Eur. Ceram. Soc., 31 [8], 1383-88 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.02.020
- Guo, D.; Li, L.-t.; Cai, K.; Gui, Z.-l.; Nan, C.-w., Rapid Prototyping of Piezoelectric Ceramics via Selective Laser Sintering and Gelcasting. J. Am. Ceram. Soc., 87 [1], 17-22 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb19938.x
- Danforth, S., Fused Deposition of Ceramics: A New Technique for the Rapid Fabrication of Ceramic Components. Materials Technology, 10 [7-8], 144-46 (1995). https://doi.org/10.1080/10667857.1995.11752614
- Jafari, M. A., A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyping Journal, 6 [3], 161-75 (2000). https://doi.org/10.1108/13552540010337047
- Khatri, B.; Lappe, K.; Habedank, M.; Mueller, T.; Megnin, C.; Hanemann, T., Fused Deposition Modeling of ABS-Barium Titanate Composites: A Simple Route towards Tailored Dielectric Devices. Polymers, 10 [6], 666 (2018). https://doi.org/10.3390/polym10060666
- Iyer, S.; McIntosh, J.; Bandyopadhyay, A.; Langrana, N.; Safari, A.; Danforth, S. C.; Clancy, R. B.; Gasdaska, C.; Whalen, P. J., Microstructural Characterization and Mechanical Properties of Si3N4 Formed by Fused Deposition of Ceramics. International Journal of Applied Ceramic Technology, 5 [2], 127-37 (2008). https://doi.org/10.1111/j.1744-7402.2008.02193.x
- Mohanty, S.; Larsen, L. B.; Trifol, J.; Szabo, P.; Burri, H. V. R.; Canali, C.; Dufva, M.; Emnéus, J.; Wolff, A., Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Materials Science and Engineering: C, 55, 569-78 (2015). https://doi.org/10.1016/j.msec.2015.06.002
- Wen, Y.; Xun, S.; Haoye, M.; Baichuan, S.; Peng, C.; Xuejian, L.; Kaihong, Z.; Xuan, Y.; Jiang, P.; Shibi, L., 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomaterials Science, 5 [9], 1690-98 (2017). https://doi.org/10.1039/C7BM00315C
- Eckel, Z. C.; Zhou, C.; Martin, J. H.; Jacobsen, A. J.; Carter, W. B.; Schaedler, T. A., Additive manufacturing of polymer-derived ceramics. Science, 351 [6268], 58-62 (2016). https://doi.org/10.1126/science.aad2688
- Ainger, F. W.; Herbert, J. M., The Preparation of Phosphorus-Nitrogen Compounds as Non-Porous Solids. Academic Press: New York, pp. 168-182 (1965).
- Chantrell, P. G.; Popper, P., Inorganic Polymers and Ceramics. Academic Press: New York, pp. 87-103 (1965).
- Jansen, M.; Jüngermann, H., A new class of promising ceramics based on amorphous inorganic networks. Curr. Opin. Solid State Mater. Sci., 2 [2], 150-57 (1997). https://doi.org/10.1016/S1359-0286(97)80059-9
- Fritz, G.; Raabe, B., Bildung siliciumorganischer Verbindungen. V. Die Thermische Zersetzung von Si(CH3)4 und Si(C2H5)4. Z. Anorg. Allg. Chem., 286 [3-4], 149-67 (1956). https://doi.org/10.1002/zaac.19562860307
- Seishi, Y.; Josaburo, H.; Mamoru, O., Continuous silicon carbide fiber of high tensile strength. Chem. Lett., 4 [9], 931-34 (1975). https://doi.org/10.1246/cl.1975.931
- Riedel, R.; Passing, G.; Schonfelder, H.; Brook, R. J., Synthesis of dense silicon-based ceramics at low temperatures. Nature, 355 [6362], 714-17 (1992). https://doi.org/10.1038/355714a0
- Liu, G.; Zhao, Y.; Wu, G.; Lu, J., Origami and 4D printing of elastomer-derived ceramic structures. Science Advances, 4 [8], eaat0641 (2018). https://doi.org/10.1126/sciadv.aat0641
- Fu, Y.; Chen, Z.; Xu, G.; Wei, Y.; Lao, C., Preparation and stereolithography 3D printing of ultralight and ultrastrong ZrOC porous ceramics. J. Alloys Compd., 789, 867-73 (2019). https://doi.org/10.1016/j.jallcom.2019.03.026
- Wang, M.; Xie, C.; He, R.; Ding, G.; Zhang, K.; Wang, G.; Fang, D., Polymer-derived silicon nitride ceramics by digital light processing based additive manufacturing. J. Am. Ceram. Soc., 102 [9], 5117-26 (2019). https://doi.org/10.1111/jace.16389
- Wang, X.; Schmidt, F.; Hanaor, D.; Kamm, P. H.; Li, S.; Gurlo, A., Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Additive Manufacturing, 27, 80-90 (2019). https://doi.org/10.1016/j.addma.2019.02.012
- Colombo, P.; Mera, G.; Riedel, R.; Soraru, G. D., Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. J. Am. Ceram. Soc., 93 [7], 1805-37 (2010).