DOI QR코드

DOI QR Code

빅데이터마이닝을 이용한 회계정보처리 모형

Accounting Information Processing Model Using Big Data Mining

  • 김경일 (한국교통대학교 융합경영전공)
  • Kim, Kyung-Ihl (Division of Convergence Management, Korea National University of Transportation)
  • 투고 : 2020.05.14
  • 심사 : 2020.07.20
  • 발행 : 2020.07.28

초록

확장성 보고서 언어인 XML기술을 회계보고 영역에 응용한 인터넷 표준인 XBRL에 기초한 회계정보처리 모형을 제안하고자 한다. 기업마다 문서의 특성이 상이하기에 의사결정자에게 유용한 정보를 제공하여야 한다는 회계의 목적에 비추어 그 중요성이 크다. 본 연구는 X-Hive 데이터베이스 내에 XBRL로 저장된 XML 계층구조를 기반으로 하는 데이터 마이닝 모형을 제안하고자 한다. 데이터마이닝 분석은 연관규칙으로 실험되었고 XBRL을 기반으로 DC-Apriori 데이터마이닝 방법을 Apriori알고리즘과 X쿼리를 결합하여 제안한다. 마지막으로 제안 모형의 타당성과 유효성에 대해서는 실험을 통해 검증하였다.

This study suggests an accounting information processing model based on internet standard XBRL which applies an extensible business reporting language, the XML technology. Due to the differences in document characteristics among various companies, this is very important with regard to the purpose of accounting that the system should provide useful information to the decision maker. This study develops a data mining model based on XML hierarchy which is stored as XBRL in the X-Hive data base. The data ming analysis is experimented by the data mining association rule. And based on XBRL, the DC-Apriori data mining method is suggested combining Apriori algorithm and X-query together. Finally, the validity and effectiveness of the suggested model is investigated through experiments.

키워드

참고문헌

  1. M. Z. Reformat & R. R. Yager. (2015), Soft computing techniques for querying XBRL data, Intelligent Systems in Accounting Finance & Management, 22(3), 179-199. https://doi.org/10.1002/isaf.1366
  2. B. L. Koveos & M. Liu (2016), Applying an ontology-argumenting XBRL Model to accounting information system for business integration, Asia-Pacific Journal of Accounting and Economics, 1(1), 1-23.
  3. D. Kaya & P. Pronobis (2016), The benefits of structured data across the information supply chain: Initial evidence on XBRL adoption and loan contracting of rpivate firm, Journal of Accounting and Public Policy, 35(4), 417-436. https://doi.org/10.1016/j.jaccpubpol.2016.04.003
  4. I. G. Main, S. Colombo & M. C. Forde (2005), Predicting the ultimate beding capacity of concrete beams from the relaxation ratio analysis of AE signals, Construction & Building Materials, 19(10), 746-754. https://doi.org/10.1016/j.conbuildmat.2005.06.004
  5. J. Richards, J, Amann, B. Arana., et. al. (2007), No Depletion of Wolbachia from On Chocerca volvulus after a short Course of RiFampin and/or Azithromycin, American Journal of Tropical Medicine & Hygiene, 77(5), 878-882. https://doi.org/10.4269/ajtmh.2007.77.878
  6. B. Ronald, C. Wood, P. Srivastava, et. al. (2008), Financing accounting information and corporate governance, Lancet, 372(9633), 145-154 https://doi.org/10.1016/S0140-6736(08)60697-2
  7. G. S. Plumlee, S. Morman & D. B. Smith (2009), Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada, Applied Geochemistry, 24(8), 1454-1463. https://doi.org/10.1016/j.apgeochem.2009.04.015
  8. D. Chong, H. Shi, L. Fu, et. al. (2017), The Impact of XBRLoninformation asymmetry: evidence from loan contracting, Journal of Management Analytics, 4(2), 145-158. https://doi.org/10.1080/23270012.2017.1299047
  9. Y. S. Jeong, D. B. Yoon & S. S. Shin. (2019), An IoT Information Security Model for Securing Bigdata Information for IoT Users, Journal of Convergence for Information Technology, 9(11), 8-14. DOI : 10.22156/CS4SMB.2019.9.11.008
  10. H. T. Kim & S. H. Kim. (2019), Data mining based army repair parts demand forecast, Journal of the Korean data & Information Science Society, 30(2), 429-444. DOI : 10.7465/jkdi.2019.30.2.429
  11. J. B. Kim, J. W. Kim & J. H. Lim. (2019), Does XBRL Adoption Constrain Earning Management? Early Evidence from Mandated U.S Filers, Contemporary Accounting Research, 36(4).127-153. DOI : 10.1111/1911-3846.12493
  12. Y. Cong, H. Du & M. A. Vasarhelyi (2018), Are XBRL Files Being Accessed? Evidence from the SEC EDGAR Log File Dataset, Journal of Inforamtion Systems, 32(3), 181-207. DOI : 10.2308/isys-51885
  13. R. Chychyla & A. Kogan (2015), Using XBRL t oconduct a large scale study of the discreoancies between the accounting numbers in Compustat and SEC XBRL 10 filing, Journal of Information Systems, 29(1), 37-72. DOI : 10.2308/isys-5092210.2308/isys-50922
  14. M. Drake, D. Roulstone & J. Thornock. (2015), The determinants and consequenced of information acquisition via EDGAR, Contemporary Accounting Research, 32(3), 1128-1161. DOI : 10.1111/1911-3846.1211910.1111/1911-3846.12119
  15. A. Perdana, A. Robb & F. Rohde. 2015), An integrative review and synthesis of XBRL research in academic journals, Journal of Information Systems, 29(1), 115-152. DOI : 10.2308/isys-5088410.2308/isys-50884