References
- L. Agelas, Beyond the BKM criterion for the 2D resistive magnetohydrodynamic equations, Analysis & PDE 11 (2018), no. 4, 899-918. https://doi.org/10.2140/apde.2018.11.899
- H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), no. 7, 773-789. https://doi.org/10.1080/03605308008820154
- A. Cordoba and D. Cordoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 (2004), no. 3, 511-528. https://doi.org/10.1007/s00220-004-1055-1
- M. Dabkowski, A. Kiselev, L. Silvestre, and V. Vicol, Global well-posedness of slightly supercritical active scalar equations, Analysis & PDE 7 (2014), no. 1, 43-72. https://doi.org/10.2140/apde.2014.7.43
- B. Dong, W. Wang, J. Wu, Z. Ye and H. Zhang, Global regularity for a class of 2D generalized tropical climate models, J. Differential Equations 266 (2019), no. 10, 6346-6382. https://doi.org/10.1016/j.jde.2018.11.007
- B. Dong, W. Wang, J. Wu, and H. Zhang, Global regularity results for the climate model with fractional dissipation, Discrete Contin. Dyn. Syst. Ser. B 24 (2019), no. 1, 211-229.
- B.-Q. Dong, J. Wu, and Z. Ye, Global regularity for a 2D tropical climate model with fractional dissipation, J. Nonlinear Sci. 29 (2019), no. 2, 511-550. https://doi.org/10.1007/s00332-018-9495-5
- J. Fan, S. Jiang, G. Nakamura, and Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations, J. Math. Fluid Mech. 13 (2011), no. 4, 557-571. https://doi.org/10.1007/s00021-010-0039-5
- J. Fan, H. Malaikah, S. Monaquel, G. Nakamura, and Y. Zhou, Global Cauchy problem of 2D generalized MHD equations, Monatsh. Math. 175 (2014), no. 1, 127-131. https://doi.org/10.1007/s00605-014-0652-0
- D. M. W. Frierson, A. J. Majda, and O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit, Commun. Math. Sci. 2 (2004), no. 4, 591-626. http://projecteuclid.org/euclid.cms/1109885499 https://doi.org/10.4310/CMS.2004.v2.n4.a3
- A. Gill, Some simple solutions for heat-induced tropical circulation, Q. J. R. Meteorol. Soc. 106 (1980), 447-462. https://doi.org/10.1002/qj.49710644905
- N. Jacob, Pseudo differential operators and Markov processes. Vol. III, Imperial College Press, London, 2005. https://doi.org/10.1142/9781860947155
- T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891-907. https://doi.org/10.1002/cpa.3160410704
- C. E. Kenig, G. Ponce, and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), no. 2, 323-347. https://doi.org/10.2307/2939277
- H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Comm. Math. Phys. 214 (2000), no. 1, 191-200. https://doi.org/10.1007/s002200000267
- Z. Lei and Y. Zhou, BKM's criterion and global weak solutions for magnetohydro-dynamics with zero viscosity, Discrete Contin. Dyn. Syst. 25 (2009), no. 2, 575-583. https://doi.org/10.3934/dcds.2009.25.575
- P. G. Lemarie-Rieusset, Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. https://doi.org/10.1201/9781420035674
- J. Li and E. Titi, Global well-posedness of strong solutions to a tropical climate model, Discrete Contin. Dyn. Syst. 36 (2016), no. 8, 4495-4516. https://doi.org/10.3934/dcds.2016.36.4495
- C. Ma, Z. Jiang, and R. Wan, Local well-posedness for the tropical climate model with fractional velocity diffusion, Kinet. Relat. Models 9 (2016), no. 3, 551-570. https://doi.org/10.3934/krm.2016006
- C. Ma and R. Wan, Spectral analysis and global well-posedness for a viscous tropical climate model with only a damp term, Nonlinear Anal. Real World Appl. 39 (2018), 554-567. https://doi.org/10.1016/j.nonrwa.2017.08.004
- A. J. Majda and J. A. Biello, The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves, J. Atmospheric Sci. 60 (2003), no. 15, 1809-1821. https://doi.org/10.1175/1520-0469(2003)060<1809:TNIOBA>2.0.CO;2
- T. Matsuno, Quasi-geostrophic motions in the equatorial area, J. Meteorol. Soc. Jpn. 44 (1966), 25-42. https://doi.org/10.2151/jmsj1965.44.1_25
- R. Wan, Global small solutions to a tropical climate model without thermal diffusion, J. Math. Phys. 57 (2016), no. 2, 021507, 13 pp. https://doi.org/10.1063/1.4941039
- X. Wu, Y. Yu, and Y. Tang, Global existence and asymptotic behavior for the 3D generalized Hall-MHD system, Nonlinear Anal. 151 (2017), 41-50. https://doi.org/10.1016/j.na.2016.11.010
- Z. Ye, Global regularity for a class of 2D tropical climate model, J. Math. Anal. Appl. 446 (2017), no. 1, 307-321. https://doi.org/10.1016/j.jmaa.2016.08.053
- Y. Yu and Y. Tang, A new blow-up criterion for the 2D generalized tropical climate model, Bull. Malays. Math. Sci. Soc. 8 (2018), 1-16. https://doi.org/10.1007/s13373-016-0094-1
- Y. Yu, X. Wu, and Y. Tang, Global regularity of the 2D liquid crystal equations with weak velocity dissipation, Comput. Math. Appl. 74 (2017), no. 5, 920-933. https://doi.org/10.1016/j.camwa.2016.11.008
- Y. Yu, X. Wu, and Y. Tang, Global well-posedness for the 2D Boussinesq system with variable viscosity and damping, Math. Methods Appl. Sci. 41 (2018), no. 8, 3044-3061. https://doi.org/10.1002/mma.4799
- B. Yuan and J. Zhao, Global regularity of 2D almost resistive MHD equations, Nonlinear Anal. Real World Appl. 41 (2018), 53-65. https://doi.org/10.1016/j.nonrwa.2017.10.006
- Y. Zhou and J. Fan, A regularity criterion for the 2D MHD system with zero magnetic diffusivity, J. Math. Anal. Appl. 378 (2011), no. 1, 169-172. https://doi.org/10.1016/j.jmaa.2011.01.014
- M. Zhu, Global regularity for the tropical climate model with fractional diffusion on barotropic mode, Appl. Math. Lett. 81 (2018), 99-104. https://doi.org/10.1016/j.aml.2018.02.003