References
- L. A. Aksent'ev, Sufficient conditions for univalence of regular functions, Izv. Vyssh. Uchebn. Zaved. Mat. 1958 (1958), no. 3 (4), 3-7.
- R. Fournier and S. Ponnusamy, A class of locally univalent functions defined by a differential inequality, Complex Var. Elliptic Equ. 52 (2007), no. 1, 1-8. https://doi.org/10.1080/17476930600780149
- D. V. Krishna and T. RamReddy, Second Hankel determinant for the class of Bazilevic functions, Stud. Univ. Babes-Bolyai Math. 60 (2015), no. 3, 413-420. https://doi.org/10.1080/17476933.2015.1012162
- S. K. Lee, V. Ravichandran, and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013 (2013), 281, 17 pp. https://doi.org/10.1186/1029-242X-2013-281
-
Marjono, J. Soko l, and D. K. Thomas, The fifth and sixth coefficients for Bazilevic functions
$B_1$ (${\alpha}$ ), Mediterr. J. Math. 14 (2017), no. 4, Paper No. 158, 11 pp. https://doi.org/10.1007/s00009-017-0958-y - M. Obradovic, A class of univalent functions, Hokkaido Math. J. 27 (1998), no. 2, 329-335. https://doi.org/10.14492/hokmj/1351001289
- M. Obradovic, A class of univalent functions. II, Hokkaido Math. J. 28 (1999), no. 3, 557-562. https://doi.org/10.14492/hokmj/1351001237
-
M. Obradovic, S. Ponnusamy, and K.-J. Wirths, Geometric studies on the class U(
$\lambda$ ), Bull. Malays. Math. Sci. Soc. 39 (2016), no. 3, 1259-1284. https://doi.org/10.1007/s40840-015-0263-5 - S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33 (1972), 392-394. https://doi.org/10.2307/2038067
- Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. (2) 41 (1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111
- Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112. https://doi.org/10.1112/S002557930000807X
-
D. V. Prokhorov and J. Szynal, Inverse coefficients for (
${\alpha}$ ,${\beta}$ )-convex functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 35 (1981), 125-143 (1984). - R. Singh, On Bazilevic functions, Proc. Amer. Math. Soc. 38 (1973), 261-271. https://doi.org/10.2307/2039275
-
A. Vasudevarao and H. Yanagihara, On the growth of analytic functions in the class U(
$\lambda$ ), Comput. Methods Funct. Theory 13 (2013), no. 4, 613-634. https://doi.org/10.1007/s40315-013-0045-8