DOI QR코드

DOI QR Code

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa (TUBITAK Marmara Research Center) ;
  • Sarac, Abdulhamit (TUBITAK National Metrology Institute) ;
  • Ertas, Ahmet H. (Department of Mechanical Engineering, Faculty of Engineering & Natural Sciences, Bursa Technical University)
  • 투고 : 2020.01.08
  • 심사 : 2020.04.24
  • 발행 : 2020.07.25

초록

In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

키워드

참고문헌

  1. Berber, A., Tinkir, M., Gultekin, S. and Celikten, I. (2011), "Prediction of a diesel engine characteristics by using different modeling techniques", J. Phys. Sci., 16, 3979-3992. https://doi.org/10.5897/IJPS10.675.
  2. Adali, S. and Duffy, K.J. (1990), "Design of antisymmetric hybrid laminates for maximum buckling load: I. Optimal fibre orientation", Compos. Struct., 14(1), 49-60. https://doi.org/10.1016/0263-8223(90)90058-M.
  3. Akbulut, M. and Sonmez, F.O. (2008), "Optimum design of composite laminates for minimum thickness", Comput. Struct., 86(21-22), 1974-1982. https://doi.org/10.1016/j.compstruc.2008.05.003.
  4. Apalak, M.K., Yildirim, M. and Ekici, R. (2008), "Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions", Compos. Sci. Technol.; 68(2), 537-550. https://doi.org/10.1016/j.compscitech.2007.06.031.
  5. Badallo, P., Trias, D., Marin, L. and Mayugo, J.A. (2013), "A comparative study of genetic algorithms for the multi-objective optimization of composite stringers under compression loads", Composites Part B, 47, 130-136. https://doi.org/10.1016/j.compositesb.2012.10.037.
  6. Bletzinger, K.U., Bischoff, M. and Ramm, E. (2000), "A unified approach for shear-locking-free triangular and rectangular shell finite elements", Comput. Struct., 75(3), 321-334. https://doi.org/10.1016/S0045-7949(99)00140-6.
  7. Callahan, K.J. and Weeks, G.E. (1992), "Optimum design of composite laminates using genetic algorithms", Compos. Eng., 2(3), 149-160. https://doi.org/10.1016/0961-9526(92)90001-M.
  8. Chronopoulos, D. (2015), "Design optimization of composite structures operating in acoustic environments", J Sound Vib, 355, 322-344. https://doi.org/10.1016/j.jsv.2015.06.028.
  9. Cui, X.Y., Liu, G.R. and Li, G.Y. (2011), "Bending and vibration responses of laminated composite plates using an edge-based smoothing technique", Eng. Anal. Boundary Elem., 35(6), 818-826. https://doi.org/10.1016/j.enganabound.2011.01.007.
  10. Dai, K.Y., Liu, G.R., Lim, K.M. and Chen, X.L. (2004), "A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates", J. Sound Vib., 269(3-5), 633-652. https://doi.org/10.1016/S0022-460X(03)00089-0.
  11. Dawe, D.J. and Wang, S. (1995), "Spline finite strip analysis of the buckling and vibration of rectangular composite laminated plates", Int. J. Mech. Sci., 37(6), 645-667. https://doi.org/10.1016/0020-7403(94)00086-Y.
  12. Diaconu, C.G., Sato, M. and Sekine, H. (2002), "Buckling characteristics and layup optimization of long laminated composite cylindrical shells subjected to combined loads using lamination parameters", Compos. Struct., 58(4), 423-433. https://doi.org/10.1016/S0263-8223(02)00130-7.
  13. Doane, D.P. and Seward, L.E. (2011), "Measuring skewness: A forgotten statistic?", J. Stat. Educ., 19(2), 1-18. https://doi.org/10.1080/10691898.2011.11889611.
  14. Erdal, O. and Sonmez, F.O. (200), "Optimum design of composite laminates for maximum buckling load capacity using simulated annealing", Compos. Struct., 71, 45-52. https://doi.org/10.1016/j.compstruct.2004.09.008.
  15. Ertas, A.H. (2013), "Optimization of fiber-reinforced laminates for a maximum fatigue life by using the particle swarm optimization. Part I", Mech. Compos. Mater., 48(6), 705-716. https://doi.org/10.1007/s11029-013-9314-x.
  16. Ertas, A.H. (2013), "Optimization of fiber-reinforced laminates for a maximum fatigue life by using the particle swarm optimization. Part II", Mech. Compos. Mater., 49(1), 107-116. https://doi.org/10.1007/s11029-013-9326-6.
  17. Ertas, A.H. and Sonmez, F.O. (2014), "Design optimization of fiber-reinforced laminates for maximum fatigue life", J. Compos. Mater., 48(20), 2493-2503. https://doi.org/10.1177/0021998313499951.
  18. Ertas, A.H. and Sonmez, F.O. (2011), "Design optimization of composite structures for maximum strength using direct simulated annealing", P. I. Mech. Eng. C-J. Mec., 225(1), 28-39. https://doi.org/10.1243/09544062JMES2105.
  19. Ertas, A.H. and Sonmez, F.O. (2010), "Design of fiber reinforced laminates for maximum fatigue life", Procedia Eng., 2(1), 251-256. https://doi.org/10.1016/j.proeng.2010.03.027.
  20. Fabro, A.T., Meng, H., Chronopoulos, D., Maskery, I. and Chen, Y. (2020), "Optimal design of rainbow elastic metamaterials", Int J Mech Sci, 165, Article Number: 105185. https://doi.org/10.1016/j.ijmecsci.2019.105185.
  21. Fazzolari, F.A. and Carrera, E. (2011), "Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates", Compos. Struct., 94(1), 50-67. https://doi.org/10.1016/j.compstruct.2011.07.018.
  22. Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N., Soares, C.M.M. and Liew, K.M. (2011), "Buckling and vibration analysis of isotropic and laminated plates by radial basis functions", Composites Part B, 42(3), 592-606. https://doi.org/10.1016/j.compositesb.2010.08.001.
  23. Ghashochi-Bargh, H. and Sadr, M.H. (2012), "Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm", Meccanica, 47(3), 719- 730. https://doi.org/10.1007/s11012-011-9482-5.
  24. Ghashochi-Bargh, H. and Sadr, M.H. (2014), "PSO algorithm for fundamental frequency optimization of fiber metal laminated panels", Struct. Eng. Mech., 47(5), 713-727. http://dx.doi.org/10.12989/sem.2013.47.5.713.
  25. Gibson, R.F. (1994), Principles of Composite Material Mechanics, McGraw-Hill Inc., Singapore.
  26. Goldfeld, Y., Arbocz, J. and Rothwell, A. (2005), "Design and optimization of laminated conical shells for buckling", Thin Wall Struct, 43(1), 107-133. https://doi.org/10.1016/j.tws.2004.07.003.
  27. Haftka, R.T. and Walsh, J.L. (1992), "Stacking sequence optimization for buckling of laminated plates by integer programming". AIAA J., 30(3), 814-819. https://doi.org/10.2514/3.10989.
  28. Hasancebi, O., Carba, S. and Saka, M. (2010), "Improving the performance of simulated annealing in structural optimization", Struct. Multidiscip. Optim, 41(2), 189-203. https://doi.org/10.1007/s00158-009-0418-9.
  29. Holland, J.H. (1992), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press, Cabridge, MA, USA.
  30. Kam, T.Y. and Chang, R.R. (1993), "Design of laminated composite plates for maximum buckling load and vibration frequency",. Comput. Methods Appl. Mech. Eng., 106(1-2), 65-81. https://doi.org/10.1016/0045-7825(93)90185-Z.
  31. Kang, B.K., Park, J.S. and Kim, J.H. (2008), "Analysis and optimal design of smart skin structures for buckling and free vibration", Compos. Struct., 84(2), 177-185. https://doi.org/10.1080/01495739.2011.601261.
  32. Karakaya, S. and Soykasap, O. (2009), "Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm", Struct. Multidiscip. Optim., 39, 477-486. https://doi.org/10.1007/s00158-008-0344-2.
  33. Kayikci, R. and Sonmez, F.O. (2012), "Design of composite laminates for optimum frequency response",. J. Sound Vib.; 331(8), 1759-1776. https://doi.org/10.1016/j.jsv.2011.12.020.
  34. Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proceedings of the fourth IEEE International Conference on Neural Networks, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
  35. Khani, A., Abdalla, M.M. and Gurdal, Z. (2012), "Circumferential stiffness tailoring of general cross section cylinders for maximum buckling load with strength constraints", Compos. Struct., 94(9), 2851-2860. https://doi.org/10.1016/j.compstruc.2012.04.018.
  36. Kirkpatrick, Jr.S., Gelatt, C. and Vecchi, M. (1983), "Optimisation by simulated annealing", Science, 220(6), 498-516. https://doi.org/10.1126/science.6836293
  37. Kogiso, N., Watson, L.T., Gurdal, Z. and Haftka, R.T. (1994), "Genetic algorithm with local improvement for composite laminate design", Struct. Multidiscip. Optim, 7(4), 207-218. https://doi.org/10.1007/BF01743714.
  38. Le Riche, R. and Haftka, R.T. (1993), "Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm", AIAA J., 31(5), 951-956. https://doi.org/10.2514/3.11710.
  39. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruc.2015.03.019.
  40. Lindgaard, E. and Lund, E. (2011), "A unified approach to nonlinear buckling optimization of composite structures", Comput. Struct., 89(3-4), 357-370. https://doi.org/10.1016/j.compstruc.2010.11.008.
  41. Lund, E. (2009), "Buckling topology optimization of laminated multi-material composite shell structures", Compos. Struct., 91(2), 158-167. https://doi.org/10.1016/j.compstruc.2009.04.046.
  42. Mark, W., Bloomfield, J., Enrique, H. and Weaver, P. M. (2010), "Analysis and benchmarking of meta-heuristic techniques for lay-up optimization", Comput. Struct., 88(5-6), 272-282. https://doi.org/10.1016/j.compstruct.2009.10.007.
  43. Massey, F.J. (1951), "The Kolmogorov-Smirnov test for goodness of fit", J. Am. Stat. Assoc., 46(253), 68- 78. https://doi.org/10.1080/01621459.1951.105007
  44. Narita, Y. and Zhao, X. (1998), "An optimal design for the maximum fundamental frequency of laminated shallow shells", Int. J. Solids Struct., 35(20), 2571-2583. https://doi.org/10.1016/S0020-7683(97)00179-0.
  45. Ovesy, H.R. and Fazilati, J. (2012), "Buckling and free vibration finite strip analysis of composite plates with cutout based on two different modeling approaches", Compos. Struct., 94(3), 1250-1258. https://doi.org/10.1016/j.compstruct.2011.11.009.
  46. Parsopoulos, K.E. and Vrahatis, M.N. (2002), "Particle swarm optimization method in multi-objective problems", Proceedings of the 2002 ACM Symposium on Applied Computing, 603-607. https://doi.org/10.1145/508791.508907.
  47. Razali, N.M. and Wah, Y.B. (2011), "Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests", J. Stat. Model. Anal., 2(1), 21-33.
  48. Razvan, C. (2016), "Comparison between the performance of GA and PSO in structural optimization problems", Am. J. Eng. Res., 5(11), 268-272.
  49. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, USA.
  50. Sahoo, R. and Singh, B.N. (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117(1), 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002.
  51. Shapiro, S.S. and Wilk, M.B. (1965), "An analysis of variance test for normality (complete samples)", Biometrika, 52(3/4), 591-611.https://doi.org/10.2307/2333709.
  52. Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T. and Vu, T.V. (2012), "Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method", Compos. Struct., 94(5), 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012.
  53. Smerdov, A.A. (2000), "A computational study in optimum formulations of optimization problems on laminated cylindrical shells for buckling II. Shells under external pressure", Compos. Sci. Technol., 60(11), 2067-2076. https://doi.org/10.1016/S0266-3538(00)00103-2.
  54. Soremekun, G., Gurdal, Z., Haftka, R.T. and Watson, L.T. (2001), "Composite laminate design optimization by genetic algorithm with generalized elitist selection", Comput. Struct. 79(2), 131-143. https://doi.org/10.1016/S0045-7949(00)00125-5.
  55. Sun, G (1989), "Practical approach to optimal design of laminated cylindrical shells for buckling", Comp. Sci. Tech., 36(3), 243-253. https://doi.org/10.1016/0266-3538(89)90023-7.
  56. Topal, U. and Ozturk, H.T. (2014), "Buckling load optimization of laminated plates via artificial bee colony algorithm", Struct. Eng. Mech.; 52(4), 755-765. https://doi.org/10.12989/sem.2014.52.4.755.
  57. Topal, U. and Uzman, U. (2007), "Optimum design of laminated composite plates to maximize buckling load using MFD method", Thin Wall Struct, 45(7-8), 660-669. https://doi.org/10.1016/j.tws.2007.06.002.
  58. Walker, M. an dHamilton, R. (2005), "A technique for optimally designing fibre-reinforced laminated plates with manufacturing uncertainties for maximum buckling strength", Eng. Optim., 37(2):135-144. https://doi.org/10.1080/03052150412331298371.
  59. Walker, M. and Hamilton, R. (2005), "A methodology for optimally designing fiber-reinforced laminated structures with design variable tolerances for maximum buckling strength", Thin Wall. Struct., 43(1), 161- 174. https://doi.org/10.1016/j.tws.2004.07.001
  60. Walker, M. and Reiss, T. (1998), "Application of MATHEMATICA to the optimal design of composite shells for improved buckling strength", Eng. Comput., 15(2), 260-267. https://doi.org/10.1108/02644409810369248.
  61. Wu, Z., Weaver, P.M., Raju, G. and Kim, B.C. (2012), "Buckling analysis and optimisation of variable angle tow composite plates", Thin-Walled Struct., 60:163-172. https://doi.org/10.1016/j.tws.2012.07.008.

피인용 문헌

  1. Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method vol.77, pp.5, 2020, https://doi.org/10.12989/sem.2021.77.5.613
  2. Viscoelastic inhomogeneous beam under time-dependent strains: A longitudinal crack analysis vol.6, pp.2, 2021, https://doi.org/10.12989/acd.2021.6.2.153