References
- Berber, A., Tinkir, M., Gultekin, S. and Celikten, I. (2011), "Prediction of a diesel engine characteristics by using different modeling techniques", J. Phys. Sci., 16, 3979-3992. https://doi.org/10.5897/IJPS10.675.
- Adali, S. and Duffy, K.J. (1990), "Design of antisymmetric hybrid laminates for maximum buckling load: I. Optimal fibre orientation", Compos. Struct., 14(1), 49-60. https://doi.org/10.1016/0263-8223(90)90058-M.
- Akbulut, M. and Sonmez, F.O. (2008), "Optimum design of composite laminates for minimum thickness", Comput. Struct., 86(21-22), 1974-1982. https://doi.org/10.1016/j.compstruc.2008.05.003.
- Apalak, M.K., Yildirim, M. and Ekici, R. (2008), "Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions", Compos. Sci. Technol.; 68(2), 537-550. https://doi.org/10.1016/j.compscitech.2007.06.031.
- Badallo, P., Trias, D., Marin, L. and Mayugo, J.A. (2013), "A comparative study of genetic algorithms for the multi-objective optimization of composite stringers under compression loads", Composites Part B, 47, 130-136. https://doi.org/10.1016/j.compositesb.2012.10.037.
- Bletzinger, K.U., Bischoff, M. and Ramm, E. (2000), "A unified approach for shear-locking-free triangular and rectangular shell finite elements", Comput. Struct., 75(3), 321-334. https://doi.org/10.1016/S0045-7949(99)00140-6.
- Callahan, K.J. and Weeks, G.E. (1992), "Optimum design of composite laminates using genetic algorithms", Compos. Eng., 2(3), 149-160. https://doi.org/10.1016/0961-9526(92)90001-M.
- Chronopoulos, D. (2015), "Design optimization of composite structures operating in acoustic environments", J Sound Vib, 355, 322-344. https://doi.org/10.1016/j.jsv.2015.06.028.
- Cui, X.Y., Liu, G.R. and Li, G.Y. (2011), "Bending and vibration responses of laminated composite plates using an edge-based smoothing technique", Eng. Anal. Boundary Elem., 35(6), 818-826. https://doi.org/10.1016/j.enganabound.2011.01.007.
- Dai, K.Y., Liu, G.R., Lim, K.M. and Chen, X.L. (2004), "A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates", J. Sound Vib., 269(3-5), 633-652. https://doi.org/10.1016/S0022-460X(03)00089-0.
- Dawe, D.J. and Wang, S. (1995), "Spline finite strip analysis of the buckling and vibration of rectangular composite laminated plates", Int. J. Mech. Sci., 37(6), 645-667. https://doi.org/10.1016/0020-7403(94)00086-Y.
- Diaconu, C.G., Sato, M. and Sekine, H. (2002), "Buckling characteristics and layup optimization of long laminated composite cylindrical shells subjected to combined loads using lamination parameters", Compos. Struct., 58(4), 423-433. https://doi.org/10.1016/S0263-8223(02)00130-7.
- Doane, D.P. and Seward, L.E. (2011), "Measuring skewness: A forgotten statistic?", J. Stat. Educ., 19(2), 1-18. https://doi.org/10.1080/10691898.2011.11889611.
- Erdal, O. and Sonmez, F.O. (200), "Optimum design of composite laminates for maximum buckling load capacity using simulated annealing", Compos. Struct., 71, 45-52. https://doi.org/10.1016/j.compstruct.2004.09.008.
- Ertas, A.H. (2013), "Optimization of fiber-reinforced laminates for a maximum fatigue life by using the particle swarm optimization. Part I", Mech. Compos. Mater., 48(6), 705-716. https://doi.org/10.1007/s11029-013-9314-x.
- Ertas, A.H. (2013), "Optimization of fiber-reinforced laminates for a maximum fatigue life by using the particle swarm optimization. Part II", Mech. Compos. Mater., 49(1), 107-116. https://doi.org/10.1007/s11029-013-9326-6.
- Ertas, A.H. and Sonmez, F.O. (2014), "Design optimization of fiber-reinforced laminates for maximum fatigue life", J. Compos. Mater., 48(20), 2493-2503. https://doi.org/10.1177/0021998313499951.
- Ertas, A.H. and Sonmez, F.O. (2011), "Design optimization of composite structures for maximum strength using direct simulated annealing", P. I. Mech. Eng. C-J. Mec., 225(1), 28-39. https://doi.org/10.1243/09544062JMES2105.
- Ertas, A.H. and Sonmez, F.O. (2010), "Design of fiber reinforced laminates for maximum fatigue life", Procedia Eng., 2(1), 251-256. https://doi.org/10.1016/j.proeng.2010.03.027.
- Fabro, A.T., Meng, H., Chronopoulos, D., Maskery, I. and Chen, Y. (2020), "Optimal design of rainbow elastic metamaterials", Int J Mech Sci, 165, Article Number: 105185. https://doi.org/10.1016/j.ijmecsci.2019.105185.
- Fazzolari, F.A. and Carrera, E. (2011), "Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates", Compos. Struct., 94(1), 50-67. https://doi.org/10.1016/j.compstruct.2011.07.018.
- Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N., Soares, C.M.M. and Liew, K.M. (2011), "Buckling and vibration analysis of isotropic and laminated plates by radial basis functions", Composites Part B, 42(3), 592-606. https://doi.org/10.1016/j.compositesb.2010.08.001.
- Ghashochi-Bargh, H. and Sadr, M.H. (2012), "Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm", Meccanica, 47(3), 719- 730. https://doi.org/10.1007/s11012-011-9482-5.
- Ghashochi-Bargh, H. and Sadr, M.H. (2014), "PSO algorithm for fundamental frequency optimization of fiber metal laminated panels", Struct. Eng. Mech., 47(5), 713-727. http://dx.doi.org/10.12989/sem.2013.47.5.713.
- Gibson, R.F. (1994), Principles of Composite Material Mechanics, McGraw-Hill Inc., Singapore.
- Goldfeld, Y., Arbocz, J. and Rothwell, A. (2005), "Design and optimization of laminated conical shells for buckling", Thin Wall Struct, 43(1), 107-133. https://doi.org/10.1016/j.tws.2004.07.003.
- Haftka, R.T. and Walsh, J.L. (1992), "Stacking sequence optimization for buckling of laminated plates by integer programming". AIAA J., 30(3), 814-819. https://doi.org/10.2514/3.10989.
- Hasancebi, O., Carba, S. and Saka, M. (2010), "Improving the performance of simulated annealing in structural optimization", Struct. Multidiscip. Optim, 41(2), 189-203. https://doi.org/10.1007/s00158-009-0418-9.
- Holland, J.H. (1992), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press, Cabridge, MA, USA.
- Kam, T.Y. and Chang, R.R. (1993), "Design of laminated composite plates for maximum buckling load and vibration frequency",. Comput. Methods Appl. Mech. Eng., 106(1-2), 65-81. https://doi.org/10.1016/0045-7825(93)90185-Z.
- Kang, B.K., Park, J.S. and Kim, J.H. (2008), "Analysis and optimal design of smart skin structures for buckling and free vibration", Compos. Struct., 84(2), 177-185. https://doi.org/10.1080/01495739.2011.601261.
- Karakaya, S. and Soykasap, O. (2009), "Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm", Struct. Multidiscip. Optim., 39, 477-486. https://doi.org/10.1007/s00158-008-0344-2.
- Kayikci, R. and Sonmez, F.O. (2012), "Design of composite laminates for optimum frequency response",. J. Sound Vib.; 331(8), 1759-1776. https://doi.org/10.1016/j.jsv.2011.12.020.
- Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proceedings of the fourth IEEE International Conference on Neural Networks, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
- Khani, A., Abdalla, M.M. and Gurdal, Z. (2012), "Circumferential stiffness tailoring of general cross section cylinders for maximum buckling load with strength constraints", Compos. Struct., 94(9), 2851-2860. https://doi.org/10.1016/j.compstruc.2012.04.018.
- Kirkpatrick, Jr.S., Gelatt, C. and Vecchi, M. (1983), "Optimisation by simulated annealing", Science, 220(6), 498-516. https://doi.org/10.1126/science.6836293
- Kogiso, N., Watson, L.T., Gurdal, Z. and Haftka, R.T. (1994), "Genetic algorithm with local improvement for composite laminate design", Struct. Multidiscip. Optim, 7(4), 207-218. https://doi.org/10.1007/BF01743714.
- Le Riche, R. and Haftka, R.T. (1993), "Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm", AIAA J., 31(5), 951-956. https://doi.org/10.2514/3.11710.
- Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruc.2015.03.019.
- Lindgaard, E. and Lund, E. (2011), "A unified approach to nonlinear buckling optimization of composite structures", Comput. Struct., 89(3-4), 357-370. https://doi.org/10.1016/j.compstruc.2010.11.008.
- Lund, E. (2009), "Buckling topology optimization of laminated multi-material composite shell structures", Compos. Struct., 91(2), 158-167. https://doi.org/10.1016/j.compstruc.2009.04.046.
- Mark, W., Bloomfield, J., Enrique, H. and Weaver, P. M. (2010), "Analysis and benchmarking of meta-heuristic techniques for lay-up optimization", Comput. Struct., 88(5-6), 272-282. https://doi.org/10.1016/j.compstruct.2009.10.007.
- Massey, F.J. (1951), "The Kolmogorov-Smirnov test for goodness of fit", J. Am. Stat. Assoc., 46(253), 68- 78. https://doi.org/10.1080/01621459.1951.105007
- Narita, Y. and Zhao, X. (1998), "An optimal design for the maximum fundamental frequency of laminated shallow shells", Int. J. Solids Struct., 35(20), 2571-2583. https://doi.org/10.1016/S0020-7683(97)00179-0.
- Ovesy, H.R. and Fazilati, J. (2012), "Buckling and free vibration finite strip analysis of composite plates with cutout based on two different modeling approaches", Compos. Struct., 94(3), 1250-1258. https://doi.org/10.1016/j.compstruct.2011.11.009.
- Parsopoulos, K.E. and Vrahatis, M.N. (2002), "Particle swarm optimization method in multi-objective problems", Proceedings of the 2002 ACM Symposium on Applied Computing, 603-607. https://doi.org/10.1145/508791.508907.
- Razali, N.M. and Wah, Y.B. (2011), "Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests", J. Stat. Model. Anal., 2(1), 21-33.
- Razvan, C. (2016), "Comparison between the performance of GA and PSO in structural optimization problems", Am. J. Eng. Res., 5(11), 268-272.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, USA.
- Sahoo, R. and Singh, B.N. (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117(1), 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002.
- Shapiro, S.S. and Wilk, M.B. (1965), "An analysis of variance test for normality (complete samples)", Biometrika, 52(3/4), 591-611.https://doi.org/10.2307/2333709.
- Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T. and Vu, T.V. (2012), "Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method", Compos. Struct., 94(5), 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012.
- Smerdov, A.A. (2000), "A computational study in optimum formulations of optimization problems on laminated cylindrical shells for buckling II. Shells under external pressure", Compos. Sci. Technol., 60(11), 2067-2076. https://doi.org/10.1016/S0266-3538(00)00103-2.
- Soremekun, G., Gurdal, Z., Haftka, R.T. and Watson, L.T. (2001), "Composite laminate design optimization by genetic algorithm with generalized elitist selection", Comput. Struct. 79(2), 131-143. https://doi.org/10.1016/S0045-7949(00)00125-5.
- Sun, G (1989), "Practical approach to optimal design of laminated cylindrical shells for buckling", Comp. Sci. Tech., 36(3), 243-253. https://doi.org/10.1016/0266-3538(89)90023-7.
- Topal, U. and Ozturk, H.T. (2014), "Buckling load optimization of laminated plates via artificial bee colony algorithm", Struct. Eng. Mech.; 52(4), 755-765. https://doi.org/10.12989/sem.2014.52.4.755.
- Topal, U. and Uzman, U. (2007), "Optimum design of laminated composite plates to maximize buckling load using MFD method", Thin Wall Struct, 45(7-8), 660-669. https://doi.org/10.1016/j.tws.2007.06.002.
- Walker, M. an dHamilton, R. (2005), "A technique for optimally designing fibre-reinforced laminated plates with manufacturing uncertainties for maximum buckling strength", Eng. Optim., 37(2):135-144. https://doi.org/10.1080/03052150412331298371.
- Walker, M. and Hamilton, R. (2005), "A methodology for optimally designing fiber-reinforced laminated structures with design variable tolerances for maximum buckling strength", Thin Wall. Struct., 43(1), 161- 174. https://doi.org/10.1016/j.tws.2004.07.001
- Walker, M. and Reiss, T. (1998), "Application of MATHEMATICA to the optimal design of composite shells for improved buckling strength", Eng. Comput., 15(2), 260-267. https://doi.org/10.1108/02644409810369248.
- Wu, Z., Weaver, P.M., Raju, G. and Kim, B.C. (2012), "Buckling analysis and optimisation of variable angle tow composite plates", Thin-Walled Struct., 60:163-172. https://doi.org/10.1016/j.tws.2012.07.008.
Cited by
- Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method vol.77, pp.5, 2020, https://doi.org/10.12989/sem.2021.77.5.613
- Viscoelastic inhomogeneous beam under time-dependent strains: A longitudinal crack analysis vol.6, pp.2, 2021, https://doi.org/10.12989/acd.2021.6.2.153