DOI QR코드

DOI QR Code

Flip-Flop of Phospholipids in DMPC/POPC Mixed Vesicles

  • Kim, Min Ki (Department of Chemistry, Hannam University) ;
  • Kim, Chul (Department of Chemistry, Hannam University)
  • Received : 2020.02.05
  • Accepted : 2020.03.10
  • Published : 2020.06.20

Abstract

Flip-flop rate constants were measured by dithionite assay of NBD-PE fluorescence in DMPC/POPC vesicles made of various DMPC/POPC ratios. The activation energy, enthalpy, entropy, and free energy were determined based on the transition state theory. We found that the activation energy, enthalpy, and entropy increased as the amount of POPC increased, but the activation free energy was almost constant. These experimental results and other similar studies allow us to propose that the POPC molecules included in DMPC vesicles affect the flip-flop motion of NBD-PE in DMPC/POPC vesicles via increasing the packing order of the ground state of the bilayer of the vesicles. The increase in the packing order in the ground state seems to be a result of the effect of the overall molecular shape of POPC with a monounsaturated tail group, rather than the effect of the longer tail group.

Keywords

References

  1. Siontorou, C. G.; Nikoleli, G.-P.; Nikolelis, D. P.; Karapetis, S. K. Membranes 2017, 7, 38. https://doi.org/10.3390/membranes7030038
  2. Strandberg, E.; Tiltak, D.; Ehni, S.; Wadhwani, P.; Ulrich, A. S. Biochim. Biophys. Acta, Biomembr. 2012, 1818, 1764. https://doi.org/10.1016/j.bbamem.2012.02.027
  3. Allhusen, J. S.; Conboy, J. C. Acc. Chem. Res. 2017, 50, 58. https://doi.org/10.1021/acs.accounts.6b00435
  4. Kampf, J. P.; Cupp, D.; Kleinfeld, A. M. J. Biol. Chem. 2006, 281, 21566. https://doi.org/10.1074/jbc.M602067200
  5. LeBarron, J.; London, E. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 1812. https://doi.org/10.1016/j.bbamem.2016.04.011
  6. Anglin, T. C.; Cooper, M. P.; Li, H.; Chandler, K.; Conboy, J. C. J. Phys. Chem. B 2010, 114, 1903. https://doi.org/10.1021/jp909134g
  7. Sanderson, J. M., Mol. Membr. Biol. 2012, 29, 118. https://doi.org/10.3109/09687688.2012.678018
  8. Anglin, T. C.; Conboy, J. C. Biochemistry 2009, 48, 10220. https://doi.org/10.1021/bi901096j
  9. Gurtovenko, A. A.; Vattulainen, I. J. Phys. Chem. B 2007, 111, 13554. https://doi.org/10.1021/jp077094k
  10. Gurtovenko, A. A.; Onike, O. I.; Anwar, J. Langmuir 2008, 24, 9656. https://doi.org/10.1021/la801431f
  11. Sapay, N.; Bennett, W. F. D.; Tieleman, D. P. Soft Matter 2009, 5, 3295. https://doi.org/10.1039/b902376c
  12. Bennett, W. F. D.; Tieleman, D. P. Acc. Chem. Res. 2014, 47, 2244. https://doi.org/10.1021/ar4002729
  13. Barile, C. J.; Tse, E. C. M.; Li, Y.; Gewargis, J. P.; Kirchschlager, N. A.; Zimmerman, S. C.; Gewirth, A. A. Biophys. J. 2016, 110, 2451. https://doi.org/10.1016/j.bpj.2016.04.041
  14. Ogushi, F.; Ishitsuka, R.; Kobayashi, T.; Sugita, Y. Chem. Phys. Lett. 2012, 522, 96. https://doi.org/10.1016/j.cplett.2011.11.057
  15. Homan, R.; Pownall, H. J. Biochim. Biophys. Acta, Biomembr. 1988, 938, 155. https://doi.org/10.1016/0005-2736(88)90155-1
  16. Armstrong, V. T.; Brzustowicz, M. R.; Wassall, S. R.; Jenski, L. J.; Stillwell, W. Arch. Biochem. Biophys. 2003, 414, 74. https://doi.org/10.1016/S0003-9861(03)00159-0
  17. Marquardt, D.; Heberle, F. A.; Miti, T.; Eicher, B.; London, E.; Katsaras, J.; Pabst, G. Langmuir 2017, 33, 3731. https://doi.org/10.1021/acs.langmuir.6b04485
  18. Nakano, M.; Fukuda, M.; Kudo, T.; Endo, H.; Handa, T. Phys. Rev. Lett. 2007, 98, 238101. https://doi.org/10.1103/PhysRevLett.98.238101
  19. John, K.; Schreiber, S.; Kubelt, J.; Herrmann, A.; Muller, P. Biophys. J. 2002, 83, 3315. https://doi.org/10.1016/S0006-3495(02)75332-0
  20. Bennett, W. F. D.; Sapay, N.; Tieleman, D. P. Biophys. J. 2014, 106, 210. https://doi.org/10.1016/j.bpj.2013.11.4486