DOI QR코드

DOI QR Code

Wastewater treatment using a hybrid process coupling adsorption on marl and microfiltration

  • Received : 2019.09.07
  • Accepted : 2020.04.16
  • Published : 2020.07.25

Abstract

Hranfa's marl, a local natural mineral, is selected for the decontamination by adsorption of aqueous effluents in textile industry. Its physicochemical characterization is first performed. It is composed mainly of Calcite, Quartz, Ankerite and Muscovite. Its specific surface area is 40 ㎡ g-1. Its adsorption performance is then tested in batch conditions using an industrial organic dye, Bemacid Red E-TL, as a model pollutant. The measured adsorption capacity of Hranfa's marl is 16 mg g-1 which is comparable to that of other types of natural adsorbents. A hybrid process is tested coupling adsorption of the dye on marl in suspension and microfiltration. An adsorption reactor is inserted into the circulation loop of a microfiltration pilot using ceramic membranes. This makes possible a continuous extraction of the treated water provided that a periodic replacement of the saturated adsorbent is done. The breakthrough curve obtained by analyzing the dye concentration in the permeate is close to the ideal one considering that no dye will cross the membrane as long as the adsorbent load is not saturated. These first experimental data provide proof of concept for such a hybrid process.

Keywords

Acknowledgement

The authors warmly thank D. Cot and B. Ribière (IEM) for SEM and EDX analyses, A. El Manssouri (IEM) for specific surface area measurements, D. Granier (Réseau RX and gamma ICGM) for DRX analyses, F.B. Henni Chebra and F. Guitarni (University of Chlef) for FTIR and chemical analyses. They also thank the Algerian and the French Ministries of Higher Education and Research for their financial support.

References

  1. Abdelhameed, R. M., el-deib, H. R., El-Dars, F. M. S. E., Ahmed, H.B. and Emam, H.E. (2018), "Applicable Strategy for Removing Liquid Fuel Nitrogenated Contaminants Using MIL-53-$NH_2$@Natural Fabric Composites", Industrial Eng. Chem. Res., 57(44), 15054-15065. https://doi.org/10.1021/acs.iecr.8b03936.
  2. Abdelhameed, R. M., El-Zawahry, M. and Emam, H.E. (2018), "Efficient removal of organophosphorus pesticides from wastewater using polyethylenimine-modified fabrics", Polymer, 155, 225-234. https://doi.org/10.1016/j.polymer.2018.09.030.
  3. Abdelhameed, R. M. and Emam, H. E. (2019), "Design of ZIF(Co & Zn)@wool composite for efficient removal of pharmaceutical intermediate from wastewater", J. Colloid Interface Sci., 552, 494-505. https://doi.org/10.1016/j.jcis.2019.05.077.
  4. Aguedal, H., Hentit H., Merouani, D., Iddou, A., Siskins, and Jumas, J. (2017), "Improvement of the sorption characteristics of diatomite by heat treatment", Key Eng. Mater.,721, 111-116. https://doi.org/10.4028/www.scientific.net/KEM.721.111.
  5. Aguedal, H., Iddou, A., Azziz, A., Shishkin, A., Locs, J. and Juhna, T. (2019), "Effect of thermal regeneration of diatomite adsorbent on its efficacity for removal of dye from water", Int. J. Environ. Sci. Technol., 16(1), 113-124. https://doi.org/10.1007/s13762-018-1647-5.
  6. Aksu, Z. and Karabayir, G. (2008), "Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye", Bioresource Technol., 99, 7730- 7741. https://doi.org/10.1016/j.biortech.2008.01.056
  7. Bagane, M. and Guiza, S. (2000), "Elimination d'un colorant des effluents de l'industrie textile par adsorption", Ann. Chim. Sci. Mat., 25, 615-626. https://doi.org/10.1016/S0151-9107(00)90003-5
  8. Baghriche, O., Djebbar, K. and Sehili, T. (2008), "Etude cinetique de l'adsorption d'un colorant cationique (vert de methyle) sur du charbon actif en milieu aqueux", Sciences et Technologie, 27, 57-62.
  9. Barkat, M., Chegrouche, S., Mellah, A., Bensmain, B., Nibou, D. and Boufatit, M. (2014), "Application of algerian bentonite in the removal of cadmium (II) and chromium (VI) from aqueous solutions", J. Surface Eng. Mater. Adv. Technol., 4(4), 210-226. https://doi.org/10.4236/jsemat.2014.44024.
  10. Belala, Z., Jeguirim, M., Belhachemi, M., Addoun, F. and Trouve, G. (2011), "Biosorption of basic dye from aqueous solutions by date stones and palm-trees waste: Kinetic, equilibrium and thermodynamic studies", Desalination, 271, 80-87. https://dx.doi.org/10.1016/j.desal.2010.12.009.
  11. Cases, J. M. (1969), "Zero point charge and structure of silicates", Journal de Chimie Physique et de Physico-Chimie Biologique, 66(10), 1602-1611. https://doi.org/10.1051/jcp/196966s21602.
  12. Charumathi, D. and Das, N. (2012), "Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. Tropicalis", Desalination, 285, 22-30. https://dx.doi.org/10.1016/j.desal.2011.09.023.
  13. Cimino, G., Passerini, A. and Toscano, G. (2000), "Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell", Water Research, 34(11), 2955-2962. https://dx.doi.org/10.1016/S0043-1354(00)00048-8.
  14. CHT Smart Chemistry with Character (2019), The CHT Group; Tubingen, Germany, https://www.cht.com.
  15. Dali-Youcef, Z., Bouabdasselem, H. and Bettahar, N. (2006), "Elimination des composes organiques par des argiles locales", Comptes Rendus Chimie, 9(10), 1295-1300. https://doi.org/10.1016/j.crci.2006.05.001.
  16. Dincer, A.R., Gunes, Y. and Karakaya, N. (2007), "Coal-based bottom ash (CBBA) waste material as adsorbent for removal of textile dyestuffs from aqueous solution", J. Hazardous Mater., 141(3), 529-535. https://doi.org/10.1016/j.jhazmat.2006.07.064.
  17. Djafer, A., Kouadri Moustefai, S., Iddou, A. and Si Al,i B. (2014), "Study of bimacid dye removal from aqueous solution: A comparative study between adsorption on pozzolana, bentonite, and biosorption on immobilized anaerobic sulfate-reducer cells", Desalination Water Treat., 52(40-42), 7723-7732. https://doi.org/10.1080/19443994.2013.833866.
  18. Djafer, A., Djafer, L., Maimoun, B. and Ayral, A. (2017), "Reuse of waste activated sludge for textile dyeing wastewater treatment by biosorption: performance optimization and comparison", Water Environ. J., 31(1), 105-112. https://doi.org/10.1111/wej.12218.
  19. Emam, H. E., Ahmed H. B., El-Deib H. R., El-Dars F. M.S.E. and Abdelhameed R.M. (2019), "Non-invasive route for desulfurization of fuel using infrared-assisted MIL-53(Al)-NH2 containing fabric", J. Colloid Interface Sci., 556, 193-205. https://doi.org/10.1016/j.jcis.2019.08.051.
  20. Florke, M., Kynast, E., Barlund, I., Eisner, S., Wimmera, F. and Alcamo, J. (2013), "Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: global simulation study", Glob. Environ. Change., 23(1), 144-156. https://doi.org/10.1016/j.gloenvcha.2012.10.018.
  21. Fu, Y. and Viraraghavan, T. (2001), "Fungal decolorization of dye wastewaters: A review", Bioresour. Technol., 79, 251-262. https://doi.org/10.1016/S0960-8524(01)00028-1.
  22. Hasnain, Isa M., Lang, L.S., Asaari, F.A.H., Aziz, H.A., Azam Ramli, N. and Dhas, J.P.A. (2007), "Low cost removal of disperse dyes from aqueous solution using palm ash", Dyes Pigm., 74(2), 446-453. http://dx.doi.org/10.1016/j.dyepig.2006.02.025.
  23. Ho, Y. and Ofomaja, A.E. (2006), "Biosorption thermodynamics of cadmium on coconut copra mealas biosorbent", J. Biochem. Eng., 30, 117-123. https://doi:10.1016/j.bej.2006.02.012.
  24. Huang, C.P. (1975), "Adsorption of Tryptophan onto Calcium Carbonate Surface", Environ. Lett., 9(1), 7-17. https://doi.org/10.1080/00139307509437452.
  25. Iler, R.K., (1979), The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, John Wiley and Son, Chichester, United Kingdom.
  26. Kumar, S., Zafar, M., Prajapati, J.K., Kumar, S. and Kannepalli, S., (2011), "Modeling studies on simultaneous adsorption of phenol andresorcinol onto granular activated carbon from simulated aqueous solution", J. Hazard. Mater., 185, 287-294. https://doi.org/10.1016/j.jhazmat.2010.09.032.
  27. Namasivayam, C. and Kavitha, D., (2002), "Removal of congo red from water by adsorption on to activated carbon prepared from coirpith, an agricultural solid waste", Dyes Pigm. 54, 47-58. http://dx.doi.org/10.1016/S0143-7208(02)00025-6.
  28. Perineau, F., Molinier, J. and Gazet, A., (1983), "Adsorption of ionic dyes on wool carbonizing waste", Wat. Res., 17(5), 559-67. https://doi.org/10.1016/0043-1354(83)90115-X
  29. Qiu, L., Cheng, R., Song, Q.,Qiu, Q., Wang, Y., Wang, Y., Han, Q. and Hu, M. (2018), "A kind of integrated device for advanced treatment of industrial wastewater by granular active carbon coupling ceramic membrane and use method thereof", Faming Zhuanli Shenqing, CN 108101266 A 20180601.
  30. Reddad, Z., Gerentes, C., Andres, Y. and LeCloirec, P. (2004), "Lead removal by a natural polysaccharide in membrane reactors", Water Sc. Technol., 49(1), 163-170. https://doi.org/10.2166/wst.2004.0048.
  31. Sadki, H., Ziat, K., Saidi, M. (2014), "Adsorption d'un colorant cationique d'un milieu aqueux sur une argile locale activee", J. Mater. Environ. Sci. 5, 2060-2065.
  32. Singh, V., Sharma, A.K., Tripathi, D.N., Sanghi, R. (2009), "Poly(methylmethacrylate) grafted chitosan: An efficient adsorbent for anionic azo dyes", J. Hazard. Mater. 161, 955-966. https://doi.org/10.1016/j.jhazmat.2008.04.096.
  33. Vaughan, T., Seo, C.W., Marschall, W.E. (2001), "Removal of selected metal ions from aqueous solution using modified corncobs", Bioresour. Technol. 78, 133-139. https://doi.org/10.1016/S0960-8524(01)00007-4.
  34. Wang, J., Song, H., Chen, S., He, J. and Ji, C. (2019), "Adsorption-membrane separation coupling device for removing antibiotics in wastewater and wastewater treatment method", Faming Zhuanli Shenqing, CN 109867372 A 20190611.
  35. Yaneva, Z. and Koumanova, B. (2006), "Comparative modelling of mono- and dinitrophenols sorption on yellow bentonite from aqueous solutions", J. Colloid Interface Sci., 293, 303-311. https://doi.org/10.1016/j.jcis.2005.06.069.
  36. Yang, Y., Ladisch, C. and Ladisch, M. R. (1988), "Cellulosic adsorbents for treating textile mill effluents", Enzym. Microb. Tech., 10, 632-636. https://doi.org/10.1016/0141-0229(88)90111-1.
  37. Zahaf, F., Dali, N., Marouf, R. and Ouadjenia, F. (2015), "Removal of a textile dye by pillared clay", J. Chem. Environ. Eng., 6(1), 11-14.
  38. Zaharia, C. and Suteu, D. (2012), "Textile organic dyes - characteristics, polluting effects and separation/elimination procedures from industrial effluents - A critical overview", Organic Pollutants Ten Years after the Stockholm Convention: Environmental and Analytical Update, InTech, Rijeka, Croatia. 55-86.
  39. Zheng, X., Chen, D., Wang, Z., Lei, Y. and Cheng, R. (2013), "Nano-$TiO_2$ membrane adsorption reactor (MAR) for virus removal in drinking water", Chem. Eng. J., 230, 180-187. https://doi.org/10.1016/j.cej.2013.06.069.