DOI QR코드

DOI QR Code

Recent advances in the characterization and the treatment methods of effluent organic matter

  • Ray, Schindra Kumar (Department of Environment and Energy, Sejong University) ;
  • Truong, Hai Bang (Department of Environment and Energy, Sejong University) ;
  • Arshad, Zeshan (Department of Environment and Energy, Sejong University) ;
  • Shin, Hyun Sang (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Hur, Jin (Department of Environment and Energy, Sejong University)
  • 투고 : 2019.11.25
  • 심사 : 2020.03.22
  • 발행 : 2020.07.25

초록

There are many previous review articles are available to summarize either the characterization methods of effluent organic matter (EfOM) or the individual control treatment options. However, there has been no attempt made to compare in parallel the physicochemical treatment options that target the removal of EfOM from biological treatments. This review deals with the recent progress on the characterization of EfOM and the novel technologies developed for EfOM treatment. Based on the publications after 2010, the advantages and the limitations of several popularly used analytical tools are discussed for EfOM characterization, which include UV-visible and fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). It is a recent trend to combine an SEC system with various types of detectors, because it can successfully track the chemical/functional composition of EfOM, which varies across a continuum of different molecular sizes. FT-ICR-MS is the most powerful tool to detect EfOM at molecular levels. However, it is noted that this method has rarely been utilized to understand the changes of EfOM in pre-treatment or post-treatment systems. Although membrane filtration is still the preferred method to treat EfOM before its discharge due to its high separation selectivity, the minimum requirements for additional chemicals, the ease of scaling up, and the continuous operation, recent advances in ion exchange and advanced oxidation processes are greatly noteworthy. Recent progress in the non-membrane technologies, which are based on novel materials, are expected to enhance the removal efficiency of EfOM and even make it feasible to selectively remove undesirable fractions/compounds from bulk EfOM.

키워드

과제정보

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2017R1A2A2A09069617). We thank Dr. Bilal Aftab for the initial organization of the manuscript.

참고문헌

  1. Agbaba, J., Jazic, J.M., Tubic, A., Watson, M., Maletic, S., Isakovski, Marijana Kragulj Dalmacija, B., (2016), "Oxidation of natural organic matter with processes involving v, $H_2O_2$ and UV light: formation of oxidation and disinfection by-products". RSC Adv., 6, 86212-86219. https://doi.org/10.1039/c6ra18072h.
  2. Ahmad, R.T., Nguyen T.V., Shim, W.G., Vigneswaran, S. Moon, H., Kandasamy J. (2012), "Effluent organic matter removal by Purolite(R)A500PS: Experimental performance and mathematical model", Sep. Purif. Technol. 98, 46-54. https://doi.org/10.1016/j.seppur.2012.06.025.
  3. Ahmed, M.B., Johir, M.A.H., Khourshed, C., Zhou, J.L., Ngo, H.H., Nghiem, D.L., Moni, M., Sun, L., 2018. Sorptive removal of dissolved organic matter in biologically-treated effluent by functionalized biochar and carbon nanotubes: Importance of sorbent functionality. Bioresour. Technol. 269, 9-17 https://doi.org/10.1016/j.biortech.2018.08.046.
  4. Al Bsoul, M. Hailat, A. Abdelhay, M. Tawalbeh, I. Jum'h, K. Bani-Melhem (2019), "Treatment of olive mill effluent by adsorption on titanium oxide nanoparticles", Sci. Total Environ., 688, 1327-1334. https://doi.org/10.1016/j.scitotenv.2019.06.381.
  5. Asaithambi, P., Sajjadi, B., Aziz, A.R.A. (2017), "Integrated ozone-photo-Fenton process for the removal of pollutant from industrial wastewater", Chinese J. Chem. Eng., 25, 516-522. https://doi.org/10.1016/j.cjche.2016.10.005.
  6. Baker, R.W., 2006. Membrane technology and applications, 2nd ed. John Wiley and Sons, Ltd, United Kingdom.
  7. Barhoumi, S. Ncib, A. Chibani, K. Brahmi, W. Bouguerra, E. Elaloui (2019), "High-rate humic acid removal from cellulose and paper industry wastewater by combining electrocoagulation process with adsorption onto granular activated carbon", Ind. Crop Prod., 140, 111715. https://doi.org/10.1016/j.indcrop.2019.111715.
  8. Barker, D.J., Salvi, S.M., Langenhoff, A.A., Stuckey, D.C. (2000), "Soluble microbial products in ABR treating low-strength wastewater", J. Environ. Eng., 126, 239-249. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:3(239).
  9. Barker, D.J., Stuckey, D.C. (1999), "A review of soluble microbial products (SMP) in wastewater treatment systems", Water Res., 33, 3063-3082. 10.1016/S0043-1354(99)00022-6.
  10. Bassandeh, M., Antony, A., Le-Clech, P., Richardson, D., Leslie G. (2013), "Evaluation of ion exchange resins for the removal of dissolved organic matter from biologically treated paper mill effluent", Chemosphere, 90, 1461-1469. https://doi.org/10.1016/j.chemosphere.2012.09.007.
  11. Bhatnagar, A., Sillanpaa, M. (2017), "Removal of natural organic matter (NOM) and its constituents from water by adsorption - A review", Chemosphere, 166, 497-510. https://doi.org/10.1016/j.chemosphere.2016.09.098.
  12. Bhatnagar, M. Sillanpaa (2017), "Removal of natural organic matter (NOM) and its constituents from water by adsorption - A review", Chemosphere, 166, 497-510. https://doi.org/10.1016/j.chemosphere.2016.09.098.
  13. Bodhipaksha, L.C., Sharpless, C.M., Chin, Y.P., MacKay, A.A., (2017), "Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin", Water Res., 110, 170-179. https://doi.org/10.1016/j.watres.2016.12.016.
  14. Bsoul, A., Hailat, M., Abdelhay, A., Tawalbeh, M., Jum'h, I., Bani-Melhem K. (2019), "Treatment of olive mill effluent by adsorption on titanium oxide nanoparticles", Sci. Total Environ., 688, 1327-1334. https://doi.org/10.1016/j.scitotenv.2019.06.381.
  15. Carstea, E.M., Bridgeman, J., Baker, A., Reynolds D.M. (2016), "Fluorescence spectroscopy for wastewater monitoring: A review", Water Res., 95, 205-219. https://doi.org/10.1016/j.watres.2016.03.021.
  16. Cawley, K.M., Butler, K.D., Aiken, G.R., Larsen, L.G., Huntington, T.G., McKnight, D.M. (2012), "Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed", Mar. Pollut. Bull., 64, 1678-1687. https://doi.org/10.1016/j.marpolbul.2012.05.040.
  17. Chen, W., Luo, Y., Ran, G., Li, Q. (2019), "An investigation of refractory organics in membrane bioreactor effluent following the treatment of landfill leachate by the $O_3/H_2O_2$ and MW/PS processes", Waste Manag., 97, 1-9. https://doi.org/10.1016/j.wasman.2019.07.016.
  18. Chen, Y., Xu, W., Zhu, H., Wei, D., Wang, N., Li, M. (2018), "Comparison of organic matter removals in single-component and bi-component systems using enhanced coagulation and magnetic ion exchange (MIEX) adsorption", Chemosphere, 210, 672-682. https://doi.org/10.1016/j.chemosphere.2018.07.055.
  19. Chen, Z., Li, M., Wen, Q., Ren, N. (2017), "Evolution of molecular weight and fluorescence of effluent organic matter (EfOM) during oxidation processes revealed by advanced spectrographic and chromatographic tools", Water Res., 124, 566- 575. https://doi.org/https://doi.org/10.1016/j.watres.2017.08.006.
  20. Chen, Z., Tang, Y., Wen, Q., Yang, B., Pan, Y. (2019), "Effect of pH on effluent organic matter removal in hybrid process of magnetic ion-exchange resin adsorption and ozonation", Chemosphere 241, 125090. https://doi.org/10.1016/j.chemosphere.2019.125090.
  21. Chin, Y.P., Alken, G., O'Loughlin, E. (1994), "Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances", Environ. Sci. Technol., 28, 1853-1858. https://doi.org/10.1021/es00060a015.
  22. Chung, Y., Kim, H., Kim, T.-S., Kim, Y.M., Kang, S. (2019), "Mitigation of organic fouling on ceramic membranes by selective removal of microbial-oriented organic matters in wastewater effluents", Sep. Purif. Technol, 219, 216-221. https://doi.org/https://doi.org/10.1016/j.seppur.2019.03.032.
  23. Ciputra, S., Antony, A., Phillips, R., Richardson, D., Leslie, G., (2010), "Comparison of treatment options for removal of recalcitrant dissolved organic matter from paper mill effluent", Chemosphere, 81, 86-91. https://doi.org/10.1016/j.chemosphere.2010.06.060.
  24. Couto, C.F., Lange, L.C., Amaral, M.C.S. (2019), "Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants-A review", J. Water Process Eng. 32, 100927. https://doi.org/https://doi.org/10.1016/j.jwpe.2019.100927.
  25. Cruz De la, N., Gimenez, J., Esplugas, S., Grandjean, D., De Alencastro, L.F., Pulgarin, C. (2012), "Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge", Water Res., 46, 1947-1957. https://doi.org/10.1016/j.watres.2012.01.014.
  26. Cui, X., Choo, K.-H., (2014), "Natural Organic Matter Removal and Fouling Control in Low-Pressure Membrane Filtration for Water Treatment", Environ. Eng. Res., 19, 1-8. 10.4491/eer.2014.19.1.001.
  27. Daud, W.M.A.W., Houshamnd, A.H. (2010), "Textural characteristics, surface chemistry and oxidation of activated carbon", J. Natural Gas Chem., 19, 267-279. https://doi.org/10.1016/S1003-9953(09)60066-9.
  28. Derrien, M., Brogi, S.R., Goncalves-Araujo, R. (2019), "Characterization of aquatic organic matter: Assessment, perspectives and research priorities", Water Res, 163, 114908. https://doi.org/https://doi.org/10.1016/j.watres.2019.114908.
  29. Domingos, R. de Abreu Fonseca, F.V. (2018), "Evaluation of adsorbent and ion exchange resins for removal of organic matter from petroleum refinery wastewaters aiming to increase water reuse", J. Environ. Manage. 214, 362-369. https://doi.org/10.1016/j.jenvman.2018.03.022.
  30. Dong, H., Qiang, Z., Richardson, S.D., (2019), "Formation of Iodinated Disinfection Byproducts (I-DBPs) in Drinking Water: Emerging Concerns and Current Issues", Acc. Chem. Res., 52, 896-905. 10.1021/acs.accounts.8b00641.
  31. Dong, M.M., Mezyk, S.P., Rosario-Ortiz, F.L. (2010), "Reactivity of effluent organic matter (EfOM) with hydroxyl radical as a function of molecular weight", Environ. Sci. Technol., 44, 5714- 5720. https://doi.org/10.1021/es1004736.
  32. Drikas, M., Dixon, M., Morran, J. (2011), "Long term case study of MIEX pre-treatment in drinking water; understanding NOM removal", Water research, 45, 1539-1548. https://doi.org/10.1016/j.watres.2010.11.024.
  33. E.M. Carstea, J. Bridgeman, A. Baker, D.M. Reynolds (2016), "Fluorescence spectroscopy for wastewater monitoring: A review", Water Res., 95, 205-219. https://doi.org/10.1016/j.watres.2016.03.021.
  34. El Fels, L., Zamama, M., Hafidi, M. (2015), "Advantages and Limitations of Using FTIR Spectroscopy for Assessing the Maturity of Sewage Sludge and Olive Oil Waste Co-composts. Biodegrad. Bioremediation Polluted Syst.", New Adv. Technol. https://doi.org/10.5772/60943.
  35. Esparza-Soto, M., Nunez-Hernandez, S., Fall, C., (2011), "Spectrometric characterization of effluent organic matter of a sequencing batch reactor operated at three sludge retention times", Water Res., 45, 6555-6563. https://doi.org/10.1016/j.watres.2011.09.057.
  36. Evenblij H., Verrecht B.,Van der Graaf J.H.J.M., Van der Bruggen. B (2005), "Manipulating filterability of MBR activated sludge by pulsed substrate addition", Desalination,178, 193-201 10.1016/j.desal.2005.02.006.
  37. F. Zietzschmann, R.L. Mitchell, M. Jekel (2015), "Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption", Water Res., 84, 153-160. https://doi.org/10.1016/j.watres.2015.07.031.
  38. Fan J., H. Li, C. Shuang, W. Li, A. Li (2014), "Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater", J. Environ Sci., 26, 1567-1574. https://doi.org/10.1016/j.jes.2014.05.024.
  39. Fan, L., Nguyen, T., Roddick, F.A., Harris, J.L., (2008), "Low-pressure membrane filtration of secondary effluent in water reuse: Pre-treatment for fouling reduction", J. Memb. Sci., 320, 135-142. https://doi.org/10.1016/j.memsci.2008.03.058.
  40. Fettig J. (1999), "Removal of humic substances by adsorption/ion exchange", Water Sci. Technol., 40, 173. https://doi.org/10.1016/S0273-1223(99)00654-X.
  41. Fialho, L.L., da Silva, W.T.L., Milori, D.M.B.P., Simoes, M.L., Martin-Neto, L. (2010), "Characterization of organic matter from composting of different residues by physicochemical and spectroscopic methods", Bioresour. Technol., 101, 1927-1934. https://doi.org/10.1016/j.biortech.2009.10.039.
  42. Fraia, S. Di, Massarotti, N., Vanoli, L., (2018), "A novel energy assessment of urban wastewater treatment plants", Energy Convers. Manag, 163, 304-313. https://doi.org/https://doi.org/10.1016/j.enconman.2018.02.058.
  43. Fuentes, M., Gonzalez-Gaitano, G., Garcia-Mina, J.M. (2006), "The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts", Org. Geochem, 37, 1949-1959. https://doi.org/10.1016/j.orggeochem.2006.07.024.
  44. Gamal, M., Mousa, H., El-Naas, M., Zacharia, R., Judd S. (2018), "Bio-regeneration of Activated Carbon: A Comprehensive Review", Sep. Purif. Technol., 197. https://doi.org/10.1016/j.seppur.2018.01.015.
  45. Gassie, L.W., Englehardt, J.D. (2019), "Mineralization of greywater organics by the ozone-UV advanced oxidation process: kinetic modeling and efficiency. Environ. Sci. Water Res. Technol. 12-16. https://doi.org/10.1039/c9ew00653b.
  46. Ge, X., Wu, Z., Cravotto, G., Manzoli, M., Cintas, P., Wu, Z., (2018), "Cork wastewater purification in a cooperative flocculation/adsorption process with microwave-regenerated activated carbon", J. Hazard. Mater., 360, 412-419. https://doi.org/10.1016/j.jhazmat.2018.08.022.
  47. Ghauch, A., Tuqan, A.M., Kibbi, N. (2015), "Naproxen abatement by thermally activated persulfate in aqueous systems", Chem. Eng. J., 279, 861-873. https://doi.org/10.1016/j.cej.2015.05.067
  48. Goldman J.H., S.A. Rounds, J.A. Needoba (2012), "Applications of Fluorescence Spectroscopy for Predicting Percent Wastewater in an Urban Stream", Environ. Sci. Techno., 46, 4374-4381. https://doi.org/10.1021/es2041114.
  49. Gonzalez, O., Justo, A., Bacardit, J., Ferrero, E., Malfeito, J.J., Sans, C. (2013), "Characterization and fate of effluent organic matter treated with UV/H2O2 and ozonation", Chem. Eng. J., 226, 402-408. https://doi.org/10.1016/j.cej.2013.04.066.
  50. Gude, V.G. (2015a), "Energy storage for desalination processes powered by renewable energy and waste heat sources", Appl. Energy. 137, 877-898. https://doi.org/10.1016/j.apenergy.2014.06.061.
  51. Gude, V.G. (2015b), "Energy and water autarky of wastewater treatment and power generation systems.", Renew. Sustain. Energy Rev. 45, 52-68. https://doi.org/https://doi.org/10.1016/j.rser.2015.01.055.
  52. Guo, X., Yu, H., Yan, Z., Gao, H., Zhang, Y. (2018), "Tracking variations of fluorescent dissolved organic matter during wastewater treatment by accumulative fluorescence emission spectroscopy combined with principal component, second derivative and canonical correlation analyses", Chemosphere, 194, 463-470. https://doi.org/10.1016/j.chemosphere.2017.12.023.
  53. Guzman, J., Mosteo, R., Sarasa, J., Alba, J.A., Ovelleiro, J.L. (2016), "Evaluation of solar photo-Fenton and ozone based processes as citrus wastewater pre-treatments", Sep. Purif. Technol., 164, 155-162. https://doi.org/10.1016/j.seppur.2016.03.025.
  54. Hawkes, J. A., Patriarca, C., Sjoberg, P. J., Tranvik, L. J., & Bergquist, J. (2018), "Extreme isomeric complexity of dissolved organic matter found across aquatic environments", Limnol. Oceanogr. Lett, 3(2), 21-30.https://doi.org/10.1002/lol2.10064.
  55. Hawkes, J.A., Sjoberg, P.J.R., Bergquist, J., Tranvik, L.J. (2019), "Complexity of dissolved organic matter in the molecular size dimension: insights from coupled size exclusion chromatography electrospray ionisation mass spectrometry", Faraday Discuss. 218, 52-71. https://doi.org/10.1039/c8fd00222c.
  56. Her, N., Amy, G., Sohn, J., Von Gunten, U. (2008), "UV absorbance ratio index with size exclusion chromatography (URI-SEC) as an NOM property indicator", J. Water Supply Res. Technol., 57, 289. https://doi.org/10.2166/aqua.2008.0001.
  57. Hodges, B.C., Cates, E.L., Kim, J.H. (2018), "Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials", Nat. Nanotechnol. 13, 642-650. https://doi.org/10.1038/s41565-018-0216-x.
  58. Hofman-Caris, C.H.M., Siegers, W.G., van de Merlen, K., de Man, A.W.A., Hofman, J.A.M.H. (2017), "Removal of pharmaceuticals from WWTP effluent: Removal of EfOM followed by advanced oxidation.", Chem. Eng. J. 327, 514-521. https://doi.org/10.1016/j.cej.2017.06.154.
  59. Holman, SR. and Ohlinger, K.N., (2007), "An evaluation of fouling potential and methods to control fouling in microfiltration for secondary wastewater effluent", Water Environ. Federation, 6417-6444. https://www.owp.csus.edu/research/wastewater/papers/Membrane-Fouling-Holman-Ohlinger-WEFTEC07.pdf https://doi.org/https://doi.org/10.1016/j.jclepro.2016.05.068.
  60. Huang, H., Chow, C.W.K., Jin, B., (2016), "Characterisation of dissolved organic matter in stormwater using high-performance size exclusion chromatography". J. Environ. Sci. (China) 42, 236-245. https://doi.org/10.1016/j.jes.2015.07.003.
  61. Huber, S.A., Balz, A., Abert, M., Pronk, W. (2011), "Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography - organic carbon detection - organic nitrogen detection (LC-OCD-OND", Water Res. 45, 879-885. https://doi.org/10.1016/j.watres.2010.09.023.
  62. Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., van der Ploeg, M., Besseling, E., Koelmans, Geissen, A.A. (2016), "Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)", Environ. Sci. Technol. 50, 2685-2691. https://doi.org/10.1021/acs.est.5b05478.
  63. Huo, S., Xi, B., Yu, H., He, L., Fan, S., Liu, H. (2008), "Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages", J. Environ. Sci. 20, 492-498. https://doi.org/10.1016/S1001-0742(08)62085-9.
  64. Hur, J., Lee, D.H., Shin, H.S., (2009), "Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments", Org. Geochem. 40, 1091-1099. https://doi.org/10.1016/j.orggeochem.2009.07.003.
  65. Iboukhoulef, H., Douani, R., Amrane, A., Chaouchi, A., Elias, A. (2019), "Heterogeneous Fenton like degradation of olive Mill wastewater using ozone in the presence of BiFeO3 photocatalyst", J. Photochem. Photobiol. A Chem. 383, 112012. https://doi.org/10.1016/j.jphotochem.2019.112012.
  66. Ignatev, T. Tuhkanen (2019), "Monitoring WWTP performance using size-exclusion chromatography with simultaneous UV and fluorescence detection to track recalcitrant wastewater fractions", Chemosphere, 214, 587-597. https://doi.org/10.1016/j.chemosphere.2018.09.099.
  67. Ignatev, Tuhkanen, T. (2019), "Monitoring WWTP performance using size-exclusion chromatography with simultaneous UV and fluorescence detection to track recalcitrant wastewater fractions", Chemosphere, 214, 587-597. https://doi.org/10.1016/j.chemosphere.2018.09.099.
  68. Ittisupornrat, S., Phihusut, D., Kitkaew, D., Sangkarak, S., Phetrak, A. (2019), "Performance of dissolved organic matter removal from membrane bioreactor effluent by magnetic powdered activated carbon", J. Environ. Manage. 248, 109314. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.109314.
  69. Jeong K., D.G. Kim, S.O. Ko (2017), "Adsorption characteristics of Effluent Organic Matter and Natural Organic Matter by Carbon Based Nanomaterials", KSCE J. Civ. Eng., 21, 119-126. https://doi.org/10.1007/s12205-016-0421-9.
  70. Jeong K., Lee, D.S., Kim, D.G., Ko, S.O. (2014), "Effects of ozonation and coagulation on effluent organic matter characteristics and ultrafiltration membrane fouling", J. Environ. Sci. (China) 26, 1325-1331. https://doi.org/10.1016/S1001-0742(13)60607-5.
  71. Jiang Z., Ye, Y., Zhang, X., Pan, B. (2019), "Validation of a combined Fe(III)/UV/NaOH process for efficient removal of carboxyl complexed Ni from synthetic and authentic effluents", Chemosphere 234, 917-924. https://doi.org/10.1016/j.chemosphere.2019.06.128.
  72. Jin P., Jin, X., Bjerkelund, V.A., Osterhus, S.W., Wang, X.C., Yang, L., (2016), "A study on the reactivity characteristics of dissolved effluent organic matter (EfOM) from municipal wastewater treatment plant during ozonation", Water Res. 88, 643-652. https://doi.org/10.1016/j.watres.2015.10.060.
  73. John R.H., Stubbins, A., Ritchie, J.D., Minor, E.C., Kieber, D.J., Mopper, K., (2009), "Erratum: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter (Limnology and Oceanography 53 955-969)", Limnol. Oceanogr. 54, 1023. https://doi.org/10.4319/lo.2009.54.3.1023.
  74. Johnson, B.R., Eldred, T.B., Nguyen, A.T., Payne, W.M., Schmidt, E.E., Alansari, A.Y., Amburgey, J.E., Poler, J.C., (2016), "High-Capacity and Rapid Removal of Refractory NOM Using Nanoscale Anion Exchange Resin", ACS Appl. Mater Interfaces., 8, 18540-18549. https://doi.org/10.1021/acsami.6b04368.
  75. Jung C., Deng, Y., Zhao, R., Torrens, K., (2017), "Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation.", Water Res. 108, 260-270. https://doi.org/10.1016/j.watres.2016.11.005.
  76. Kang, K.H., Shin, H.S., Park, H. (2002), "Characterization of humic substances present in landfill leachates with different landfill ages and its implications", Water Res. 36, 4023-4032. https://doi.org/10.1016/S0043-1354(02)00114-8.
  77. Karelid, V., Larsson, G., Bjorlenius, B. (2017), "Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants", J. Environ. Manage. 193, 491-502. https://doi.org/10.1016/j.jenvman.2017.02.042.
  78. Kawasaki, N., Matsushige, K., Komatsu, K., Kohzu, A., Nara, F.W., Ogishi, F., Yahata, M., Mikami, H., Goto, T., Imai, A. (2011), "Fast and precise method for HPLC-size exclusion chromatography with UV and TOC (NDIR) detection: Importance of multiple detectors to evaluate the characteristics of dissolved organic matter", Water Res. 45, 6240-6248. https://doi.org/10.1016/j.watres.2011.09.021.
  79. Khetan, S.K., Collins, T.J., (2007), "Human pharmaceuticals in the aquatic environment: A challenge to green chemisty", Chem. Rev., 107, 2319-2364. 10.1021/cr020441w.
  80. Kim, H.-C., Dempsey, B.A. (2010), "Removal of organic acids from EfOM using anion exchange resins and consequent reduction of fouling in UF and MF", J. Membrane Sci., 364, 325-330. https://doi.org/10.1016/j.memsci.2010.08.032.
  81. Klaus, U., Pfeifer, T., Spiteller, M. (2000), "APCI-MS/MS: A powerful tool for the analysis of bound residues resulting from the interaction of pesticides with DOM and humic substances", Environ. Sci. Technol. 34, 3514-3520. https://doi.org/10.1021/es9913129YYan.
  82. Klavarioti, M., Mantzavinos, D., Kassinos, D. (2009), "Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes", Environ. Int. 35, 402-417. https://doi.org/10.1016/j.envint.2008.07.009.
  83. Koch, B. P., & Dittmar, T. (2006), "From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter", Rapid Commun. Mass Spectrm., 20(5), 926-932. https://doi.org/10.1002/rcm.2386.
  84. Koch, B. P., Witt, M., Engbrodt, R., Dittmar, T., & Kattner, G. (2005), "Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry", Geochimica et Cosmochimica Acta, 69(13), 3299-3308. https://doi.org/10.1016/J.GCA.2005.02.027.
  85. Korshin, G. V, Li, C., Benjamin, M.M. (1997), "Organic Matter Through Uv Spectroscopy: a consistent theory", Water Res. 31, 1787-1795. https://doi.org/10.1016/S0043-1354(97)00006-7.
  86. Krasner, S.W., Westerhoff, P., Chen, B., Rittmann, B.E., Nam, S.-N., Amy, G. (2009), "Impact of Wastewater Treatment Processes on Organic Carbon, Organic Nitrogen, and DBP Precursors in Effluent Organic Matter", Environ. Sci. Technol. 43, 2911-2918. https://doi.org/10.1021/es802443t.
  87. Krasner, S.W., Westerhoff, P., Chen, B., Rittmann, B.E., Nam, S.-N., Amy, G., (2009), "Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effluent organic matter", Environ. Sci. Technol., 43, 2911-2918. https://doi.org/10.1021/es802443t.
  88. Laabs, C.N., Amy, G.L., Jekel, M. (2006), "Understanding the size and character of fouling-causing substances from effluent organic matter (EfOM) in low-pressure membrane filtration", Environ. Sci. Technol. 40, 4495-4499. https://doi.org/10.1021/es060070r.
  89. Lamelas, C., Pinheiro, J.P., Slaveykova, V.I., (2009), "Effect of Humic Acid on Cd(II), Cu(II), and Pb(II) Uptake by Freshwater Algae: Kinetic and Cell Wall Speciation Considerations", Environ. Sci. Technol., 43, 730-735. 10.1021/es802557r.
  90. Lamelas, C., Wilkinson, K.J., Slaveykova, V.I. (2005), "Influence of the Composition of Natural Organic Matter on Pb Bioavailability to Microalgae", Environ. Sci. Technol. 39, 6109- 6116. https://doi.org/10.1021/es050445t.
  91. Lee, Y., Von Gunten, U. (2016), "Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: Reaction kinetics, transformation products, and changes of biological effects", Environ. Sci. Water Res. Technol. 2, 421-442. https://doi.org/10.1039/c6ew00025h.
  92. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D. (2011), "Biochar effects on soil biota - A review", Soil Biol. Biochem, 43, 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022.
  93. Levchuk, I., Rueda Marquez, J.J., Sillanpaa, M. (2018), "Removal of natural organic matter (NOM) from water by ion exchange - A review", Chemosphere, 192, 90-104. https://doi.org/10.1016/j.chemosphere.2017.10.101.
  94. Li L., Wang, Y., Zhang, W., Yu, S., Wang, X., Gao, N., (2020), "New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review", Chem. Eng. J., 381, 122676. https://doi.org/10.1016/j.cej.2019.122676.
  95. Li, D., He, X.S., Xi, B.D., Wei, Z.M., Pan, H.W. and Cui, D.Y. (2014), "Study on UV-Visible spectra characteristic of dissolved organic matter during municipal solid waste composting", Adv. Mater. Res. 878, 840-849. https://doi.org/10.4028/www.scientific.net/AMR.878.840.
  96. Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., Huo, S., Cheng, P., Liu, J., Addy, M., Chen, P., Chen, D., Ruan, R.. (2019), "Microalgae-based wastewater treatment for nutrients recovery: A review", Bioresour. Technol. 291, 121934. https://doi.org/https://doi.org/10.1016/j.biortech.2019.121934.
  97. Li, L., Wang, Y., Zhang, W., Yu, S., Wang, X., Gao, N. (2020), "New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review", Chem. Eng. J. 381, 122676. https://doi.org/https://doi.org/10.1016/j.cej.2019.122676.
  98. Li, M., Chen, Z., Wang, Z., Wen, Q. (2019), "Investigation on degradation behavior of dissolved effluent organic matter, organic micro-pollutants and bio-toxicity reduction from secondary effluent treated by ozonation", Chemosphere 217, 223-231. https://doi.org/10.1016/j.chemosphere.2018.11.039.
  99. Li, P., Hur, J., (2017), Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review", Crit. Rev. Environ. Sci. Technol. 47, 131-154. https://doi.org/10.1080/10643389.2017.1309186.
  100. Li, W.-T., Chen, S.-Y., Xu, Z.-X., Li, Y., Shuang, C.-D., Li, A.-M., (2014), "Characterization of Dissolved Organic Matter in Municipal Wastewater Using Fluorescence PARAFAC Analysis and Chromatography Multi-Excitation/Emission Scan: A Comparative Study", Environ. Sci. Technol., 48, 2603-2609. https://doi.org/10.1021/es404624q.
  101. Li, W.T., Chen, S.-Y., Xu, Z.X., Li, Y., Shuang, C.-D., Li, A.-M. (2014), "Characterization of Dissolved Organic Matter in Municipal Wastewater Using Fluorescence PARAFAC Analysis and Chromatography Multi-Excitation/Emission Scan: A Comparative Study", Environ. Sci. Technol. 48, 2603-2609. https://doi.org/10.1021/es404624q.
  102. Li, W.T., Xu, Z.X., Li, A.M., Wu, W., Zhou, Q., Wang, J.N. (2013), "HPLC/HPSEC-FLD with multi-excitation/emission scan for EEM interpretation and dissolved organic matter analysis", Water Res. 47, 1246-1256. https://doi.org/10.1016/j.watres.2012.11.040.
  103. Li, Z.H., Yuan, L., Gao, S.X., Wang, L., Sheng, G.P. (2019), "Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process", Water Res. 159, 145-152. https://doi.org/10.1016/j.watres.2019.05.005.
  104. Liang, S., Liu, C., Song, L., (2007), "Soluble microbial products in membrane bioreactor operation: Behaviors, characteristics, and fouling potential", Water Res., 41, 95-101. 10.1016/j.watres.2006.10.008.
  105. Lin, T., Li, L., Chen, W., Pan, S. (2012), "Effect and mechanism of preoxidation using potassium permanganate in an ultrafiltration membrane system", Desalination 286, 379-388. https://doi.org/10.1016/j.desal.2011.11.052.
  106. Liu, S., Lim, M., Fabris, R., Chow, C.W.K., Drikas, M., Korshin, G., Amal, R. (2010), "Multi-wavelength spectroscopic and chromatography study on the photocatalytic oxidation of natural organic matter", Water Res. 44, 2525-2532. https://doi.org/10.1016/j.watres.2010.01.036.
  107. Ly, Q.V., Hur, J. (2018), "Further insight into the roles of the chemical composition of dissolved organic matter (DOM) on ultrafiltration membranes as revealed by multiple advanced DOM characterization tools", Chemosphere 201, 168-177. https://doi.org/10.1016/j.chemosphere.2018.02.181.
  108. Ly, Q.V., Nghiem, L.D., Cho, J., Maqbool, T., Hur, J. (2019), "Organic carbon source-dependent properties of soluble microbial products in sequencing batch reactors and its effects on membrane fouling", J. Environ. Manage. 244, 40-47. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.05.045.
  109. Ly, Q.V., Nghiem, L.D., Sibag, M., Maqbool, T., Hur, J. (2018), "Effects of COD/N ratio on soluble microbial products in effluent from sequencing batch reactors and subsequent membrane fouling", Water Res. 134, 13-21. https://doi.org/https://doi.org/10.1016/j.watres.2018.01.024.
  110. Ma, D., Gao, Y., Gao, B., Wang, Y., Yue, Q., Li, Q. (2014), "Impacts of powdered activated carbon addition on trihalomethane formation reactivity of dissolved organic matter in membrane bioreactor effluent", Chemosphere 117, 338-344. https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.07.070.
  111. Manickavachagam, M., Sillanpaa, M., Swaminathan, M., Ahmmad, B. (2015), "Advanced Oxidation Processes for Wastewater Treatment", Int. J. Photoenergy. https://doi.org/10.1155/2015/363167.
  112. Maqbool, T., Bae, S., Hur, J. (2018), "Exploring the complex removal behavior of natural organic matter upon N-doped reduced graphene oxide-activated persulfate via excitation-emission matrix combined with parallel factor analysis and size exclusion chromatography", Chem. Eng. J. 347, 252-262. https://doi.org/10.1016/j.cej.2018.04.121.
  113. Maqbool, T., Cho, J., Hur, J. (2017), "Dynamic changes of dissolved organic matter in membrane bioreactors at different organic loading rates: Evidence from spectroscopic and chromatographic methods", Bioresour. Technol. 234, 131-139. https://doi.org/https://doi.org/10.1016/j.biortech.2017.03.035.
  114. Maqbool, T., Cho, J., Hur, J. (2018), "Changes in spectroscopic signatures in soluble microbial products of activated sludge under different osmotic stress conditions", Bioresour. Technol. 255, 29-38. https://doi.org/https://doi.org/10.1016/j.biortech.2018.01.113.
  115. Maqbool, T., Cho, J., Hur, J. (2019), "Importance of nutrient availability for soluble microbial products formation during a famine period of activated sludge: Evidence from multiple analyses", J. Environ. Sci. 84, 112-121. https://doi.org/https://doi.org/10.1016/j.jes.2019.04.021.
  116. Martinez-Huitle, C.A., Panizza, M. (2018), "Electrochemical oxidation of organic pollutants for wastewater treatment. Curr. Opin. Electrochem. 11, 62-71. https://doi.org/10.1016/j.coelec.2018.07.010.
  117. Mathews, J.A., Tan, H. (2016) "Circular economy: Lessons from China", Nature 531, 440-442. https://doi.org/10.1038/531440a
  118. Matilainen, A., Sillanpaa, M. (2010), "Removal of natural organic matter from drinking water by advanced oxidation processes", Chemosphere 80, 351-365. https://doi.org/10.1016/j.chemosphere.2010.04.067.
  119. McAdams, B.C., Aiken, G.R., McKnight, D.M., Arnold, W.A., Chin, Y.P. (2018), "High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods", Environ. Sci. Technol. 52, 722-730. https://doi.org/10.1021/acs.est.7b04401.
  120. McNeill, K., Canonica, S. (2016), "Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties", Environ. Sci. Process. Impacts 18, 1381-1399. https://doi.org/10.1039/c6em00408c.
  121. Meinelt, T., Paul, A., Phan, T.M., Zwirnmann, E., Kruger, A., Wienke, A., Steinberg, C.E.W. (2007), "Reduction in vegetative growth of the water mold Saprolegnia parasitica (Coker) by humic substance of different qualities", Aquat. Toxicol. 83, 93-103. https://doi.org/https://doi.org/10.1016/j.aquatox.2007.03.013.
  122. Michael-Kordatou, I., Michael, C., Duan, X., He, X., Dionysiou, D.D., Mills, M.A., Fatta-Kassinos, D. (2015), "Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications. Water Res. 77, 213-248. https://doi.org/10.1016/j.watres.2015.03.011.
  123. Mori, M., Itabashi, H., Ikedo, M., Tanaka, K.. (2006), "Ion-exclusion chromatography with the direct UV detection of non-absorbing inorganic cations using an anion-exchange conversion column in the iodide-form", Talanta 70, 174-177. https://doi.org/10.1016/j.talanta.2006.01.043.
  124. Mostofa, K.M., Wu, F., Liu, C.-Q., Fang, W.L., Yuan, J., Ying, W.L., Wen, L., Yi M. (2010), "Characterization of Nanming River (southwestern China) sewerage-impacted pollution using an excitation-emission matrix and PARAFAC", Limnology, 11, 217-231. https://doi.org/10.1007/s10201-009-0306-4.
  125. Murphy K.R., A. Hambly, S. Singh, R.K. Henderson, A. Baker, R. Stuetz, S.J. Khan (2011), "Organic Matter Fluorescence in Municipal Water Recycling Schemes: Toward a Unified PARAFAC Model", Environ. Sci. Technol. 45, 2909-2916. https://doi.org/10.1021/es103015e.
  126. Murphy K.R., R. Bro, C.A. Stedmon (2014), "Chemometric analysis of organic matter fluorescence", Aquatic organic matter fluorescence, 339-375. https://doi.org/10.1017/CBO9781139045452.016.
  127. Murphy, K.R., Bro, R. and Stedmon, C.A., (2014), "Chemometric analysis of organic matter fluorescence", Aquatic organic matter fluorescence, 339-375. https://doi.org/10.1017/CBO9781139045452.016.
  128. Nguyen, T.M.H., Suwan, P., Koottatep, T., Beck, S.E., (2019), "Application of a novel, continuous-feeding ultraviolet light emitting diode (UV-LED) system to disinfect domestic wastewater for discharge or agricultural reuse", Water Res., 153, 53-62. https://doi.org/10.1016/j.watres.2019.01.006.
  129. Nguyen, T.V., Zhang, R., Vigneswaran, S., Ngo, H.H., Kandasamy, J., Mathes, P. (2011), "Removal of organic matter from effluents by Magnetic Ion Exchange (MIEX(R))", Desalination 276, 96- 102. https://doi.org/10.1016/j.desal.2011.03.028.
  130. Oliveira Marcionilio, S.M.L., Crisafulli, R., Medeiros, G.A., de Sousa Tonha, M., Garnier, J., Neto, B.A.D., Linares, J.J. (2019), "Influence of hydrodynamic conditions on the degradation of 1-butyl-3-methylimidazolium chloride solutions on boron-doped diamond anodes", Chemosphere 224, 343-350. https://doi.org/10.1016/j.chemosphere.2019.02.128.
  131. Pan, Z., Song, C., Li, L., Wang, H., Pan, Y., Wang, C., Li, J., Wang, T., Feng, X.. (2019), Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects", Chem. Eng. J. 376, 120909. https://doi.org/10.1016/j.cej.2019.01.188.
  132. Pernet-Coudrier, B., Clouzot, L., Varrault, G., Tusseau-Vuillemin, M.-H., Verger, A., Mouchel, J.-M., (2008), "Dissolved organic matter from treated effluent of a major wastewater treatment plant: characterization and influence on copper toxicity", Chemosphere, 73, 593-599. https://doi.org/10.1016/j.chemosphere.2008.05.064.
  133. Peuravuori, J., Pihlaja, K. (1997), "Isolation and characterization of natural organic matter from lake water: Comparison of isolation with solid adsorption and tangential membrane filtration", Environ. Int. 23, 441-451. https://doi.org/10.1016/S0160-4120(97)00049-4.
  134. Phong, D.D., Hur, J. (2016), "Non-catalytic and catalytic degradation of effluent dissolved organic matter under UVA-and UVC-irradiation tracked by advanced spectroscopic tools", Water Res. 105, 199-208. https://doi.org/10.1016/j.watres.2016.08.068.
  135. Poblete, R., Perez, N. (2020), "Use of sawdust as pretreatment of photo-Fenton process in the depuration of landfill leachate", J. Environ. Manage. 253. https://doi.org/10.1016/j.jenvman.2019.109697.
  136. Qu, J., Fan, M. (2010), "The Current State of Water Quality and Technology Development for Water Pollution Control in China. Crit. Rev", Environ. Sci. Technol. 40, 519-560. https://doi.org/10.1080/10643380802451953.
  137. Razaviarani, V., Zazo, J.A., Casas, J.A., Jaffe, P.R. (2019), "Coupled fenton-denitrification process for the removal of organic matter and total nitrogen from coke plant wastewater", Chemosphere 224, 653-657. https://doi.org/10.1016/j.chemosphere.2019.02.178.
  138. Richardson, S.D., (2003), "Disinfection by-products and other emerging contaminants in drinking water", Trend Anal. Chem., 22, 666-684. https://doi.org/10.1016/S0165-9936(03)01003-3.
  139. Rosenberger, S., Laabs, C., Lesjean, B., Gnirss, R., Amy, G., Jekel, M., Schrotter, J.-C. (2006), "Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment", Water Res. 40(4), 710-720. https://doi.org/10.1016/j.watres.2005.11.028.
  140. Seibert, D., Henrique Borba, F., Bueno, F., Inticher, J.J., Modenes, A.N., Espinoza-Quinones, F.R., Bergamasco, R. (2019), "Two-stage integrated system photo-electro-Fenton and biological oxidation process assessment of sanitary landfill leachate treatment: An intermediate products study", Chem. Eng. J. 372, 471-482. https://doi.org/10.1016/j.cej.2019.04.162.
  141. Shanmuganathan, S., Nguyen, T.V., Shim, W.G., Kandasamy, J., Listowski, A., Vigneswaran S. (2014), "Effluent organic matter removal from reverse osmosis feed by granular activated carbon and purolite A502PS fluidized beds", J. Ind. Eng. Chem., 20, 4499-4508. https://doi.org/10.1016/j.jiec.2014.02.022.
  142. Shon, H.K., Vigneswaran, S., Kandasamy, J. and Cho, J. (2011), "Membrane technology for organic removal in wastewater", Water and Wastewater Treatment Technologies, UNESCO-ELOSS.
  143. Shon, H.K., Vigneswaran, S., Kim, I.S., Cho, J., Ngo, H.H., (2004), The effect of pretreatment to ultrafiltration of biologically treated sewage effluent: A detailed effluent organic matter (EfOM) characterization", Water Res. 38, 1933-1939. https://doi.org/10.1016/j.watres.2004.01.015.
  144. Shon, H.K., Vigneswaran, S., Snyder, S.A. (2006), "Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment. Crit. Re", Environ. Sci. Technol. 36, 327-374. https://doi.org/10.1080/10643380600580011.
  145. Sun J., X. Li, Y. Quan, Y. Yin, S. Zheng (2015), "Effect of long-term organic removal on ion exchange properties and performance during sewage tertiary treatment by conventional anion exchange resins", Chemosphere, 136, 181-189. https://doi.org/10.1016/j.chemosphere.2015.05.002.
  146. Sun, F., Wang, X., Li, X. (2011), "Change in the fouling propensity of sludge in membrane bioreactors (MBR) in relation to the accumulation of biopolymer clusters", Bioresour. Technol. 102, 4718-4725. https://doi.org/10.1016/j.biortech.2011.01.048.
  147. Sun, W., Yue, D., Song, J., Nie, Y. (2018), "Adsorption removal of refractory organic matter in bio-treated municipal solid waste landfill leachate by anion exchange resins", Waste Management, 81, 61-70. https://doi.org/10.1016/j.wasman.2018.10.005.
  148. Sun, Y., Chen, Z., Wu, G., Wu, Q., Zhang, F., Niu, Z., Hu, H.-Y. (2016), "Characteristics of water quality of municipal wastewater treatment plants in China: implications for resources utilization and management", J. Clean. Prod. 131, 1-9. https://doi.org/10.1016/j.jclepro.2016.05.068
  149. T.V. Nguyen, R. Zhang, S. Vigneswaran, H.H. Ngo, J. Kandasamy, P. Mathes (2011), "Removal of organic matter from effluents by Magnetic Ion Exchange (MIEX(R))", Desalination, 276, 96-102. https://doi.org/10.1016/j.desal.2011.03.028.
  150. Tenorio, R., Fedders, A.C., Strathmann, T.J., Guest, J.S., (2017), "Impact of growth phases on photochemically produced reactive species in the extracellular matrix of algal cultivation systems", Environ. Sci. Water Res. Technol. 3, 1095-1108. https://doi.org/10.1039/c7ew00172j.
  151. Tian, J., Wu, C., Yu, H., Gao, S., Li, G., Cui, F., Qu, F. (2018), "Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water", Water Res. 132, 190- 199.https://doi.org/10.1016/j.watres.2018.01.005.
  152. Trigueros, D.E.G., Modenes, A.N., de Souza, P.S.C., de Pauli, A.R., de Souza, A.R., Espinoza-Quinones, F.R., Borba, F.H. (2019), "Statistical optimization of the photo-Fenton operational parameters with in situ ferrioxalate induction in the treatment of textile effluent", J. Photochem. Photobiol. A Chem. 385, 112095. https://doi.org/10.1016/j.jphotochem.2019.112095.
  153. Umar, M., Roddick, F.A., Fan, L., Autin, O., Jefferson, B. (2015), "Treatment of municipal wastewater reverse osmosis concentrate using UVC-LED/H2O2 with and without coagulation pre-treatment", Chem. Eng. J. 260, 649-656. https://doi.org/10.1016/j.cej.2014.09.028.
  154. Waclawek, S., Lutze, H. V., Grubel, K., Padil, V.V.T., Cernik, M., Dionysiou, D.D. (2017), "Chemistry of persulfates in water and wastewater treatment: A review", Chem. Eng. J., 330, 44-62. https://doi.org/10.1016/j.cej.2017.07.132.
  155. Wang, D., Cheng, L., Wang, M., Zhang, X., Xue, D., Zhuo, W., Zheng, L., Ding, A. (2018), "The performance of a sulfate-radical mediated advanced oxidation process in the degradation of organic matter from secondary effluents", Environ. Sci. Water Res. Technol., 4, 773-782. https://doi.org/10.1039/c7ew00346c.
  156. Wang, J.L., Xu, L.J. (2012), "Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application", Crit. Rev. Environ. Sci. Technol., 42, 251-325. https://doi.org/10.1080/10643389.2010.507698.
  157. WANG, L., WU, F., ZHANG, R., LI, W., LIAO, H. (2009), "Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau", J. Environ. Sci. 21, 581-588. https://doi.org/10.1016/S1001-0742(08)62311-6.
  158. Wang, X., Wang, J., Li, K., Zhang, H., Yang, M. (2018), "Molecular characterization of effluent organic matter in secondary effluent and reclaimed water: Comparison to natural organic matter in source water", J. Environ. Sci. 63, 140-146. https://doi.org/https://doi.org/10.1016/j.jes.2017.03.020.
  159. Wei D., H.H. Ngo, W. Guo, W. Xu, Y. Zhang, B. Du, Q. Wei (2016), "Biosorption of effluent organic matter onto magnetic biochar composite: Behavior of fluorescent components and their binding properties", Bioresource Technology, 214, 259-265. https://doi.org/10.1016/j.biortech.2016.04.109.
  160. Wei L., K. Wang, Q. Zhao, C. Xie, W. Qiu, T. Jia (2011), "Kinetics and equilibrium of adsorption of dissolved organic matter fractions from secondary effluent by fly ash", J. Environ. Sci., 23, 1057-1065. https://doi.org/10.1016/S1001-0742(10)60597-9.
  161. Wei, D., Ngo, H.H., Guo, W., Xu, W., Du, B., Khan, M.S., Wei, Q., (2018), "Biosorption performance evaluation of heavy metal onto aerobic granular sludge-derived biochar in the presence of effluent organic matter via batch and fluorescence approaches", Bioresour. Technol. 249, 410-416. https://doi.org/https://doi.org/10.1016/j.biortech.2017.10.015.
  162. Wen, S., Chen, L., Li, W., Ren, H., Li, K., Wu, B., Hu, H., Xu, K. (2018), "Insight into the characteristics, removal, and toxicity of effluent organic matter from a pharmaceutical wastewater treatment plant during catalytic ozonation", Sci. Rep. 8, 1-9. https://doi.org/10.1038/s41598-018-27921-0.
  163. Westerhoff, P., Anning, D. (2000), "Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization", J. Hydrol. 236, 202-222. https://doi.org/10.1016/S0022-1694(00)00292-4.
  164. Worms, I.A., Traber, J., Kistler, D., Sigg, L., Slaveykova, V.I., (2010), "Uptake of Cd (II) and Pb (II) by microalgae in presence of colloidal organic matter from wastewater treatment plant effluents", Environ. Pollut., 158, 369-374. https://doi.org/10.1016/j.envpol.2009.09.007.
  165. Xiao K., J.-Y. Sun, Y.-X. Shen, S. Liang, P. Liang, X.-M. Wang, X. Huang (2016), "Fluorescence properties of dissolved organic matter as a function of hydrophobicity and molecular weight: case studies from two membrane bioreactors and an oxidation ditch", RSC Advances, 6, 24050-24059. https://doi.org/10.1039/C5RA23167A.
  166. Xiao, K., Sun, J.-Y., Shen, Y.-X., Liang, S., Liang, P., Wang, X.-M., Huang, X. (2016), "Fluorescence properties of dissolved organic matter as a function of hydrophobicity and molecular weight: case studies from two membrane bioreactors and an oxidation ditch", RSC Advances, 6, 24050-24059. https://doi.org/10.1039/C5RA23167A.
  167. Xie, X., Chang, F., Li, X., Li, M., Zhu, Z. (2017), "Investigation and application of photochemically induced direct UV detection of low or non-UV absorbing compounds by capillary electrophoresis", Talanta 162, 362-367. https://doi.org/10.1016/j.talanta.2016.10.046.
  168. Xing, J., Liang, H., Xu, S., Chuah, C.J., Luo, X., Wang, T., Wang, J., Li, G., Snyder, S.A. (2019), "Organic matter removal and membrane fouling mitigation during algae-rich surface water treatment by powdered activated carbon adsorption pretreatment: Enhanced by UV and UV/chlorine oxidation", Water Res. 159, 283-293. https://doi.org/10.1016/j.watres.2019.05.017.
  169. Xiong, X., Wu, X., Zhang, B., Xu, H., Wang D. (2018), "The interaction between effluent organic matter fractions and Al2(SO4)3 identified by fluorescence parallel factor analysis and FT-IR spectroscopy", Colloids Surf. A Physicochem. Eng. Asp., 555, 418-428. https://doi.org/10.1016/j.colsurfa.2018.07.026.
  170. Yan, C., Liu, H., Sheng, Y., Huang, X., Nie, M., Huang, Q., Baalousha, M., (2018), "Fluorescence characterization of fractionated dissolved organic matter in the five tributaries of Poyang Lake, China", Sci. Total Environ., 638, 1311-1320. https://doi.org/10.1016/j.scitotenv.2018.05.099.
  171. Yan, M., Korshin, G., Wang, D., Cai, Z. (2012), "Characterization of dissolved organic matter using high-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with a multiple wavelength absorbance detector", Chemosphere 87, 879-885. https://doi.org/10.1016/j.chemosphere.2012.01.029.
  172. Yang, L., Hur, J., Zhuang, W. (2015), "Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review", Environ. Sci. Pollut. R., 22, 6500-6510. https://doi.org/10.1007/s11356-015-4214-3.
  173. Yang, W., He, C., Wang, X., Zhang, Y., Cheng, Z. Dai, B., Zhang, L., (2017), "Dissolved organic matter (DOM) removal from bio-treated coking wastewater using a new polymeric adsorbent modified with dimethylamino groups", Bioresour. Technol. 241, 82-87. https://doi.org/10.1016/j.biortech.2017.05.106.
  174. Yang, W., Wang, J., Hua, M., Zhang, Y., Shi, X., (2018), "Characterization of effluent organic matter from different coking wastewater treatment plants", Chemosphere 203, 68-75. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.03.167.
  175. Yoo, J., Shim, T., Hur, J., Jung, J. (2016), "Role of polarity fractions of effluent organic matter in binding and toxicity of silver and copper", J. Hazard. Mater. 317, 344-351. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.06.009.
  176. Yu, H., Qu, F., Sun, L., Liang, H., Han, Z., Chang, H., Shao, S., Li, G. (2015), "Relationship between soluble microbial products (SMP) and effluent organic matter (EfOM): Characterized by fluorescence excitation emission matrix coupled with parallel factor analysis", Chemosphere 121, 101-109. https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.11.037.
  177. Yu, H., Qu, F., Zhang, X., Shao, S., Rong, H., Liang, H., Bai, L., Ma, J. (2019), "Development of correlation spectroscopy (COS)method for analyzing fluorescence excitation emission matrix (EEM): A case study of effluent organic matter (EfOM)ozonation", Chemosphere 228, 35-43. https://doi.org/10.1016/j.chemosphere.2019.04.119.
  178. Zhang, R., Vigneswaran, S., Ngo, H.H., Nguyen, H. (2006), "Magnetic ion exchange (MIEX(R)) resin as a pre-treatment to a submerged membrane system in the treatment of biologically treated wastewater", Desalination 192, 296-302. https://doi.org/10.1016/j.desal.2005.07.040.
  179. Zhang, X., Yang, C.W., Li, J., Yuan, L., Sheng, G.P. (2019), "Spectroscopic insights into photochemical transformation of effluent organic matter from biological wastewater treatment plants", Sci. Total Environ. 649, 1260-1268. https://doi.org/10.1016/j.scitotenv.2018.08.378.
  180. Zhang, Y., An, Y., Liu, C., Wang, Y., Song, Z., Li, Y., Meng, W., Qi, F., Xu, B., Croue, J.-P., Yuan, D. and Ikhlaq, A., (2019), "Catalytic ozonation of emerging pollutant and reduction of toxic by-products in secondary effluent matrix and effluent organic matter reaction activity", Water Res. 166, 115026. https://doi.org/10.1016/j.watres.2019.115026.
  181. Zhao, Y., Song, L., Ong, S.L. (2010) "Fouling of RO membranes by effluent organic matter (EfOM): Relating major components of EfOM to their characteristic fouling behaviors", J. Memb. Sci. 349, 75-82. https://doi.org/10.1016/j.memsci.2009.11.024.
  182. Zhou, Z., Liu, X., Sun, K., Lin, C., Ma, J., He, M., Ouyang, W. (2019), "Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review", Chem. Eng. J. 372, 836-851. https://doi.org/10.1016/j.cej.2019.04.213
  183. Zietzschmann, F., Mitchell, R.L., Jekel, M., (2015), "Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption", Water Res. 84, 153-160. https://doi.org/10.1016/j.watres.2015.07.031.
  184. Zietzschmann, F., Worch, E., Altmann, J., Ruhl, A.S., Sperlich, A., Meinel, F., Jekel, M., (2014), "Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater", Water Res. 65, 297-306. https://doi.org/10.1016/j.watres.2014.07.043.