DOI QR코드

DOI QR Code

Bending behavior of squared cutout nanobeams incorporating surface stress effects

  • Eltaher, Mohamed A (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Abdelrahman, Alaa A. (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University)
  • Received : 2020.05.03
  • Accepted : 2020.06.30
  • Published : 2020.07.25

Abstract

In nanosized structures as the surface area to the bulk volume ratio increases the classical continuum mechanics approaches fails to investigate the mechanical behavior of such structures. In perforated nanobeam structures, more decrease in the bulk volume is obtained due to perforation process thus nonclassical continuum approaches should be employed for reliable investigation of the mechanical behavior these structures. This article introduces an analytical methodology to investigate the size dependent, surface energy, and perforation impacts on the nonclassical bending behavior of regularly squared cutout nanobeam structures for the first time. To do this, geometrical model for both bulk and surface characteristics is developed for regularly squared perforated nanobeams. Based on the proposed geometrical model, the nonclassical Gurtin-Murdoch surface elasticity model is adopted and modified to incorporate the surface energy effects in perforated nanobeams. To investigate the effect of shear deformation associated with cutout process, both Euler-Bernoulli and Timoshenko beams theories are developed. Mathematical model for perforated nanobeam structure including surface energy effects are derived in comprehensive procedure and nonclassical boundary conditions are presented. Closed forms for the nonclassical bending and rotational displacements are derived for both theories considering all classical and nonclassical kinematics and kinetics boundary conditions. Additionally, both uniformly distributed and concentrated loads are considered. The developed methodology is verified and compared with the available results and an excellent agreement is noticed. Both classical and nonclassical bending profiles for both thin and thick perforated nanobeams are investigated. Numerical results are obtained to illustrate effects of beam filling ratio, the number of hole rows through the cross section, surface material characteristics, beam slenderness ratio as well as the boundary and loading conditions on the non-classical bending behavior of perforated nanobeams in the presence of surface effects. It is found that, the surface residual stress has more significant effect on the bending deflection compared with the corresponding effect of the surface elasticity, Es. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams.

Keywords

Acknowledgement

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (DF-096-135-1441). The authors, therefore, acknowledge with thanks DSR technical and financial support

References

  1. Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A. M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
  2. Agwa, M.A. and Eltaher, M.A. (2016), "Vibration of a carbyne nanomechanical mass sensor with surface effect", Appl. Phys. A, 122(4), 335. https://doi.org/10.1007/s00339-016-9934-9.
  3. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
  4. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555
  5. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  6. Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49(11), 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007.
  7. Ansari, R., Torabi, J. and Hassani, R. (2019), "Vibration analysis of FG-CNTRC plates with an arbitrarily shaped cutout based on the variational differential quadrature finite element method", Mater. Res. Express, 6(12), 125086. https://doi.org/10.1088/2053-1591/ab5b57.
  8. Ansari, R., Hassani, R. and Torabi, J. (2020), "Mixed-type formulation of higher-order shear deformation theory for vibration and buckling analysis of FG-GPLRC plates using VDQFEM", Compos. Struct., 235, 111738.https://doi.org/10.1016/j.compstruct.2019.111738
  9. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  10. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  11. Barretta, R. and de Sciarra, F.M. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130, 187-198. https://doi.org/10.1016/j.ijengsci.2018.05.009.
  12. Barretta, R., Caporale, A., Faghidian, S.A., Luciano, R., de Sciarra, F.M. and Medaglia, C.M. (2019), "A stress-driven local-nonlocal mixture model for Timoshenko nano-beams", Compos. Part B: Eng., 164, 590-598. https://doi.org/10.1016/j.compositesb.2019.01.012.
  13. Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. Trans Tech Publications Ltd. DOI: https://doi.org/10.12989/anr.2019.7.2.089
  14. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  15. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695
  16. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457.
  17. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res, 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  18. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  19. Boutaleb, S., Benrahou, K. H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  20. Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M.E.A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E, 75, 163-168. https://doi.org/10.1016/j.physe.2015.09.014.
  21. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  22. Chan, J., Eichenfield, M., Camacho, R. and Painter, O. (2009), "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity", Optics Express, 17(5), 3802-3817. https://doi.org/10.1364/OE.17.003802.
  23. Choudhary, P.K., Mahato, P.K. and Jana, P. (2019), "Optimal location of cutout within a cross-ply laminated cantilever beam for maximum lateral buckling load", J. Physics: Conference Series (Vol. 1240, No. 1, p. 012084). IOP Publishing., https://doi.org/10.1088/1742-6596/1240/1/012084.
  24. Ebrahimi, F., Daman, M. and Fardshad, R.E. (2017), "Surface effects on vibration and buckling behavior of embedded nanoarches", Struct. Eng. Mech., 64(1), 1-10. https://doi.org/10.12989/sem.2017.64.1.001.
  25. Ebrahimi, F. and Barati, M.R. (2018), "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143.
  26. Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model", Struct. Eng. Mech., 65(4), 465-476. https://doi.org/10.12989/sem.2018.65.4.465.
  27. Ebrahimi, F., Jafari, A. and Mahesh, V. (2019a), "Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates", Struct. Eng. Mech., 72(1), 113-129. https://doi.org/10.12989/sem.2019.72.1.113
  28. Ebrahimi, F., Fardshad, R.E. and Mahesh, V. (2019b), "Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391. https://doi.org/10.12989/anr.2019.7.6.391.
  29. Ebrahimi, F., Karimiasl, M., Civalek, O. and Vinyas, M. (2019c), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., 7(2), 77. https://doi.org/10.12989/anr.2019.7.2.077.
  30. Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019d), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. https://doi.org/10.12989/anr.2019.7.4.223.
  31. Ebrahimi, F., Farazmandnia, N., Kokaba, M.R. and Mahesh, V. (2019e), "Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory", Eng.with Comput., 1-16. https://doi.org/10.1007/s00366-019-00864-4.
  32. Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. (2013a), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002.
  33. Eltaher, M.A., Hamed, M.A., Sadoun, A.M., and Mansour, A. (2014a), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Comput., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076.
  34. Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013.
  35. Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018a), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsystem Technologies, 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3.
  36. Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018b), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsystem Technologies, 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.
  37. Eltaher, M.A., Omar, F.A., Abdalla, W.S. and Gad, E.H. (2019a), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Waves in Random and Complex Media, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693.
  38. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S., and A.E. Alshorbagy. (2020a), "Mechanical Behaviors of Piezoelectric Nonlocal Nanobeam with Cutouts", Smart Structures and Systems, 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
  39. Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, M.A. and Alshorbagy, A.E. (2020b), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Structural Engineering and Mechanics.
  40. Eltaher, M.A. and Mohamed, N. (2020a), "Nonlinear Stability and Vibration of Imperfect CNTs by Doublet Mechanics", Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
  41. Eltaher, M.A. and Mohamed, N.A. (2020b), "Vibration of Nonlocal Perforated Nanobeams under General Boundary Conditions", Smart Struct. Syst., 25(4), 510-514. https://doi.org/10.12989/sss.2020.25.4.501.
  42. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Archive for Rational Mech. Ana., 57(4), 291-323. https://doi.org/10.1007/BF00261375
  43. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
  44. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  45. Hamed, M.A., Mohamed, N. and Eltaher, M.A. (2020), "Stability Buckling and Bending of Nanobeams including Cutouts", Eng. with Comput., 1-14. https://doi.org/10.1007/s00366-020-01063-2.
  46. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  47. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
  48. Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029.
  49. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. with Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
  50. Karami, B., Janghorban, M. and Tounsi, A. (2019), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Braz. Soc. Mech. Sci. Eng., 41(11), 495. https://doi.org/10.1007/s40430-019-1996-0.
  51. Karimiasl, M., Ebrahimi, F. and Mahesh, V. (2019a), "Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell", Thin-Wall. Struct., 143, 106152. https://doi.org/10.1016/j.tws.2019.04.044.
  52. Karimiasl, M., Ebrahimi, F. and Mahesh, V. (2019b), "Postbuckling analysis of piezoelectric multiscale sandwich composite doubly curved porous shallow shells via Homotopy Perturbation Method", Eng. with Comput., 1-17. https://doi.org/10.1007/s00366-019-00841-x.
  53. Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-dimensional Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021.
  54. Khater, M.E., Eltaher, M.A., Abdel-Rahman, E. and Yavuz, M. (2014), "Surface and thermal load effects on the buckling of curved nanowires", Eng. Sci. Technol., 17(4), 279-283. https://doi.org/10.1016/j.jestch.2014.07.003.
  55. Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M.A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
  56. Kim, J.H., Jeon, J.H., Park, J.S., Seo, H.D., Ahn, H.J. and Lee, J. M. (2015), "Effect of reinforcement on buckling and ultimate strength of perforated plates", Int. J. Mech. Sci., 92, 194-205. https://doi.org/10.1016/j.ijmecsci.2014.12.016.
  57. Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021.
  58. Liu, C. and Rajapakse, R.K.N.D. (2009), "Continuum models incorporating surface energy for static and dynamic response of nanoscale beams", IEEE T. Nanotechnology, 9(4), 422-431. 10.1109/TNANO.2009.2034142.
  59. Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341.
  60. Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004.
  61. Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensor. Actuators B: Chemical, 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085.
  62. Mahesh, V., Kattimani, S., Harursampath, D. and Trung, N.T. (2019), "Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment", Smart Struct. Syst., 24(2), 267-292. https://doi.org/10.12989/sss.2019.24.2.267.
  63. Mahesh, V., Sagar, P.J. and Kattimani, S. (2018), "Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate", J. Intel. Mat. Syst. Str., 29(7), 1430-1455. https://doi.org/10.1177/1045389X17740739.
  64. Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E. and Meletis, E.I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. DOI 10.1007/s12206-012-0871-z.
  65. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139. https://doi.org/10.1088/0957-4484/11/3/301.
  66. Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
  67. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. with Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2.
  68. Phung-Van, P., Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H. and Abdel-Wahab, M. (2017a), "Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads", Nonlinear Dynam., 87(2), 879-894. https://doi.org/10.1007/s11071-016-3085-6.
  69. Phung-Van, P., Ferreira, A.J.M., Nguyen-Xuan, H. and Wahab, M. A. (2017b), "An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates", Compos. Part B: Eng., 118, 125-134. https://doi.org/10.1016/j.compositesb.2017.03.012.
  70. Phung-Van, P., Thanh, C.L., Nguyen-Xuan, H. and Abdel-Wahab, M. (2018), "Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments", Compos. Struct., 201, 882-892. https://doi.org/10.1016/j.compstruct.2018.06.087.
  71. Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Wahab, M.A. (2019), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B: Eng., 164, 215-225. https://doi.org/10.1016/j.compositesb.2018.11.036.
  72. Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036.
  73. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  74. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2020), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties". Eng. with Comput., https://doi.org/10.1007/s00366-020-01024-9.
  75. Sivakumar, N., Kanagasabapathy, H. and Srikanth, H.P. (2018), "Analysis of Perforated Piezoelectric Sandwich Smart Structure Cantilever Beam Using COMSOL", Materials Today: Proceedings, 5(5), 12025-12034. https://doi.org/10.1016/j.matpr.2018.02.177.
  76. Sun, F., Wang, P., Li, W., Fan, H. and Fang, D. (2017), "Effects of circular cutouts on mechanical behaviors of carbon fiber reinforced lattice-core sandwich cylinder", Compos. Part A: Appl. Sci. Manufact., 100, 313-323. https://doi.org/10.1016/j.compositesa.2017.05.029.
  77. Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.
  78. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  79. Thanh, C.L., Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Wahab, M.A. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184, 633-649. https://doi.org/10.1016/j.compstruct.2017.10.025.
  80. Thanh, C.L., Tran, L.V., Vu-Huu, T., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019a), "Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates", Comput. Method. Appl. M., 353, 253-276. https://doi.org/10.1016/j.cma.2019.05.002.
  81. Thanh, C.L., Tran, L.V., Bui, T.Q., Nguyen, H.X. and Abdel-Wahab, M. (2019b), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221, 110838. https://doi.org/10.1016/j.compstruct.2019.04.010.
  82. Thanh, C.L., Ferreira, A.J.M. and Wahab, M.A. (2019c), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin-Wall. Struct., 145, 106427. https://doi.org/10.1016/j.tws.2019.106427.
  83. Thanh, C.L., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019d), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Method. Appl. M., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028.
  84. Vinyas, M. (2020a), "Computational Analysis of Smart Magneto-Electro-Elastic Materials and Structures: Review and Classification", Archiv. Comput. Method. Eng., 1-44. https://doi.org/10.1007/s11831-020-09406-4.
  85. Vinyas, M. (2020b)," Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study", Mater. Res. Express, 6(12), 125707. https://doi.org/10.1088/2053-1591/ab6649.
  86. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  87. Vinyas, M. and Kattimani, S.C. (2017a), "A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.
  88. Vinyas, M. and Kattimani, S.C. (2017b), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015.
  89. Vinyas, M. and Kattimani, S.C. (2017c), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: a finite element study", Compos. Struct., 178, 63-86. https://doi.org/10.1016/j.compstruct.2017.06.068.
  90. Vinyas, M. and Kattimani, S.C. (2017d), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.481.
  91. Vinyas, M. and Kattimani, S.C. (2017e), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.
  92. Vinyas, M. and Kattimani, S.C. (2018a), "Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory", Compos. Struct., 202, 1339-1352. https://doi.org/10.1016/j.compstruct.2018.06.069.
  93. Vinyas, M. and Kattimani, S.C. (2018b), "Investigation of the effect of BaTiO3/CoFe2O4 particle arrangement on the static response of magneto-electro-thermo-elastic plates", Compos. Struct., 185, 51-64. https://doi.org/10.1016/j.compstruct.2017.10.073.
  94. Vinyas, M., Kattimani, S.C. and Joladarashi, S. (2018a), "Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods", J. Therm. Stresses, 41(8), 1063-1079. https://doi.org/10.1080/01495739.2018.1447856.
  95. Vinyas, M., Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018b), "Effect of BaTiO3/CoFe2O4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment", Mater. Res. Express, 5(12), 125702. https://doi.org/10.1088/2053-1591/aae0c8.
  96. Vinyas, M., Harursampath, D. and Kattimani, S.C. (2020a), "On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods", Defence Technology, articles in press. https://doi.org/10.1016/j.dt.2020.03.012.
  97. Vinyas, M., Harursampath, D. and Thoi, T.N. (2020b), "A higher order coupled frequency characteristics study of smart magneto-electro-elastic composite plates with cut-outs using finite element methods", Defence Technology, articles in press. https://doi.org/10.1016/j.dt.2020.02.009.
  98. Mahesh, V. and Kattimani, S. (2019), "Finite element simulation of controlled frequency response of skew multiphase magneto-electro-elastic plates", J. Intel. Mater. Syst. Struct., 30(12), 1757-1771. https://doi.org/10.1177/1045389X19843674.
  99. Vinyas, M., Harursampath, D. and Nguyen-Thoi, T. (2019), "Influence of active constrained layer damping on the coupled vibration response of functionally graded magneto-electro-elastic plates with skewed edges". Defence Technology, articles in press. https://doi.org/10.1016/j.dt.2019.11.016.
  100. Vinyas, M., Nischith, G., Loja, M.A.R., Ebrahimi, F. and Duc, N. D. (2019a), "Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory", Compos. Struct., 214, 132-142. https://doi.org/10.1016/j.compstruct.2019.02.010.
  101. Vinyas, M., Sandeep, A.S., Nguyen-Thoi, T., Ebrahimi, F. and Duc, D.N. (2019b), "A finite element-based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory", J. Intel. Mat. Syst. Str., 30(16), 2478-2501. https://doi.org/10.1177/1045389X19862386.
  102. Wang, G.F. and Feng, X.Q. (2007), "Effects of surface elasticity and residual surface tension on the natural frequency of microbeams", Appl. Phys. Lett., 90(23), 231904. https://doi.org/10.1063/1.2746950.
  103. Xiao, Y., Wen, J. and Wen, X. (2012), "Broadband locally resonant beams containing multiple periodic arrays of attached resonators", Phys. Lett. A, 376(16), 1384-1390. https://doi.org/10.1016/j.physleta.2012.02.059.
  104. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress-based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  105. Zhang, Z.J., Zhang, Q.C., Li, F.C., Yang, J.W., Liu, J.W., Liu, Z. Y. and Jin, F. (2019), "Modal characteristics of micro-perforated sandwich beams with square honeycomb-corrugation hybrid cores: A mixed experimental-numerical study", Thin-Walle. Struct., 137, 185-196. https://doi.org/10.1016/j.tws.2019.01.004 .

Cited by

  1. On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
  2. Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.663