Acknowledgement
This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (DF-096-135-1441). The authors, therefore, acknowledge with thanks DSR technical and financial support
References
- Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A. M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
- Agwa, M.A. and Eltaher, M.A. (2016), "Vibration of a carbyne nanomechanical mass sensor with surface effect", Appl. Phys. A, 122(4), 335. https://doi.org/10.1007/s00339-016-9934-9.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
- Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49(11), 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007.
- Ansari, R., Torabi, J. and Hassani, R. (2019), "Vibration analysis of FG-CNTRC plates with an arbitrarily shaped cutout based on the variational differential quadrature finite element method", Mater. Res. Express, 6(12), 125086. https://doi.org/10.1088/2053-1591/ab5b57.
- Ansari, R., Hassani, R. and Torabi, J. (2020), "Mixed-type formulation of higher-order shear deformation theory for vibration and buckling analysis of FG-GPLRC plates using VDQFEM", Compos. Struct., 235, 111738.https://doi.org/10.1016/j.compstruct.2019.111738
- Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
- Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
- Barretta, R. and de Sciarra, F.M. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130, 187-198. https://doi.org/10.1016/j.ijengsci.2018.05.009.
- Barretta, R., Caporale, A., Faghidian, S.A., Luciano, R., de Sciarra, F.M. and Medaglia, C.M. (2019), "A stress-driven local-nonlocal mixture model for Timoshenko nano-beams", Compos. Part B: Eng., 164, 590-598. https://doi.org/10.1016/j.compositesb.2019.01.012.
- Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. Trans Tech Publications Ltd. DOI: https://doi.org/10.12989/anr.2019.7.2.089
- Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
- Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695
- Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457.
- Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res, 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
- Boutaleb, S., Benrahou, K. H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
- Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M.E.A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E, 75, 163-168. https://doi.org/10.1016/j.physe.2015.09.014.
- Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
- Chan, J., Eichenfield, M., Camacho, R. and Painter, O. (2009), "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity", Optics Express, 17(5), 3802-3817. https://doi.org/10.1364/OE.17.003802.
- Choudhary, P.K., Mahato, P.K. and Jana, P. (2019), "Optimal location of cutout within a cross-ply laminated cantilever beam for maximum lateral buckling load", J. Physics: Conference Series (Vol. 1240, No. 1, p. 012084). IOP Publishing., https://doi.org/10.1088/1742-6596/1240/1/012084.
- Ebrahimi, F., Daman, M. and Fardshad, R.E. (2017), "Surface effects on vibration and buckling behavior of embedded nanoarches", Struct. Eng. Mech., 64(1), 1-10. https://doi.org/10.12989/sem.2017.64.1.001.
- Ebrahimi, F. and Barati, M.R. (2018), "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143.
- Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model", Struct. Eng. Mech., 65(4), 465-476. https://doi.org/10.12989/sem.2018.65.4.465.
- Ebrahimi, F., Jafari, A. and Mahesh, V. (2019a), "Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates", Struct. Eng. Mech., 72(1), 113-129. https://doi.org/10.12989/sem.2019.72.1.113
- Ebrahimi, F., Fardshad, R.E. and Mahesh, V. (2019b), "Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391. https://doi.org/10.12989/anr.2019.7.6.391.
- Ebrahimi, F., Karimiasl, M., Civalek, O. and Vinyas, M. (2019c), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., 7(2), 77. https://doi.org/10.12989/anr.2019.7.2.077.
- Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019d), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. https://doi.org/10.12989/anr.2019.7.4.223.
- Ebrahimi, F., Farazmandnia, N., Kokaba, M.R. and Mahesh, V. (2019e), "Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory", Eng.with Comput., 1-16. https://doi.org/10.1007/s00366-019-00864-4.
- Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. (2013a), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002.
- Eltaher, M.A., Hamed, M.A., Sadoun, A.M., and Mansour, A. (2014a), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Comput., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076.
- Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013.
- Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018a), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsystem Technologies, 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3.
- Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018b), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsystem Technologies, 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S. and Gad, E.H. (2019a), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Waves in Random and Complex Media, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693.
- Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S., and A.E. Alshorbagy. (2020a), "Mechanical Behaviors of Piezoelectric Nonlocal Nanobeam with Cutouts", Smart Structures and Systems, 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, M.A. and Alshorbagy, A.E. (2020b), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Structural Engineering and Mechanics.
- Eltaher, M.A. and Mohamed, N. (2020a), "Nonlinear Stability and Vibration of Imperfect CNTs by Doublet Mechanics", Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
- Eltaher, M.A. and Mohamed, N.A. (2020b), "Vibration of Nonlocal Perforated Nanobeams under General Boundary Conditions", Smart Struct. Syst., 25(4), 510-514. https://doi.org/10.12989/sss.2020.25.4.501.
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Archive for Rational Mech. Ana., 57(4), 291-323. https://doi.org/10.1007/BF00261375
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Hamed, M.A., Mohamed, N. and Eltaher, M.A. (2020), "Stability Buckling and Bending of Nanobeams including Cutouts", Eng. with Comput., 1-14. https://doi.org/10.1007/s00366-020-01063-2.
- Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
- Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
- Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029.
- Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. with Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
- Karami, B., Janghorban, M. and Tounsi, A. (2019), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Braz. Soc. Mech. Sci. Eng., 41(11), 495. https://doi.org/10.1007/s40430-019-1996-0.
- Karimiasl, M., Ebrahimi, F. and Mahesh, V. (2019a), "Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell", Thin-Wall. Struct., 143, 106152. https://doi.org/10.1016/j.tws.2019.04.044.
- Karimiasl, M., Ebrahimi, F. and Mahesh, V. (2019b), "Postbuckling analysis of piezoelectric multiscale sandwich composite doubly curved porous shallow shells via Homotopy Perturbation Method", Eng. with Comput., 1-17. https://doi.org/10.1007/s00366-019-00841-x.
- Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-dimensional Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021.
- Khater, M.E., Eltaher, M.A., Abdel-Rahman, E. and Yavuz, M. (2014), "Surface and thermal load effects on the buckling of curved nanowires", Eng. Sci. Technol., 17(4), 279-283. https://doi.org/10.1016/j.jestch.2014.07.003.
- Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M.A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
- Kim, J.H., Jeon, J.H., Park, J.S., Seo, H.D., Ahn, H.J. and Lee, J. M. (2015), "Effect of reinforcement on buckling and ultimate strength of perforated plates", Int. J. Mech. Sci., 92, 194-205. https://doi.org/10.1016/j.ijmecsci.2014.12.016.
- Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021.
- Liu, C. and Rajapakse, R.K.N.D. (2009), "Continuum models incorporating surface energy for static and dynamic response of nanoscale beams", IEEE T. Nanotechnology, 9(4), 422-431. 10.1109/TNANO.2009.2034142.
- Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341.
- Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004.
- Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensor. Actuators B: Chemical, 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085.
- Mahesh, V., Kattimani, S., Harursampath, D. and Trung, N.T. (2019), "Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment", Smart Struct. Syst., 24(2), 267-292. https://doi.org/10.12989/sss.2019.24.2.267.
- Mahesh, V., Sagar, P.J. and Kattimani, S. (2018), "Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate", J. Intel. Mat. Syst. Str., 29(7), 1430-1455. https://doi.org/10.1177/1045389X17740739.
- Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E. and Meletis, E.I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. DOI 10.1007/s12206-012-0871-z.
- Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139. https://doi.org/10.1088/0957-4484/11/3/301.
- Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
- Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. with Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2.
- Phung-Van, P., Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H. and Abdel-Wahab, M. (2017a), "Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads", Nonlinear Dynam., 87(2), 879-894. https://doi.org/10.1007/s11071-016-3085-6.
- Phung-Van, P., Ferreira, A.J.M., Nguyen-Xuan, H. and Wahab, M. A. (2017b), "An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates", Compos. Part B: Eng., 118, 125-134. https://doi.org/10.1016/j.compositesb.2017.03.012.
- Phung-Van, P., Thanh, C.L., Nguyen-Xuan, H. and Abdel-Wahab, M. (2018), "Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments", Compos. Struct., 201, 882-892. https://doi.org/10.1016/j.compstruct.2018.06.087.
- Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Wahab, M.A. (2019), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B: Eng., 164, 215-225. https://doi.org/10.1016/j.compositesb.2018.11.036.
- Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036.
- Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
- Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2020), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties". Eng. with Comput., https://doi.org/10.1007/s00366-020-01024-9.
- Sivakumar, N., Kanagasabapathy, H. and Srikanth, H.P. (2018), "Analysis of Perforated Piezoelectric Sandwich Smart Structure Cantilever Beam Using COMSOL", Materials Today: Proceedings, 5(5), 12025-12034. https://doi.org/10.1016/j.matpr.2018.02.177.
- Sun, F., Wang, P., Li, W., Fan, H. and Fang, D. (2017), "Effects of circular cutouts on mechanical behaviors of carbon fiber reinforced lattice-core sandwich cylinder", Compos. Part A: Appl. Sci. Manufact., 100, 313-323. https://doi.org/10.1016/j.compositesa.2017.05.029.
- Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.
- Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
- Thanh, C.L., Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Wahab, M.A. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184, 633-649. https://doi.org/10.1016/j.compstruct.2017.10.025.
- Thanh, C.L., Tran, L.V., Vu-Huu, T., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019a), "Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates", Comput. Method. Appl. M., 353, 253-276. https://doi.org/10.1016/j.cma.2019.05.002.
- Thanh, C.L., Tran, L.V., Bui, T.Q., Nguyen, H.X. and Abdel-Wahab, M. (2019b), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221, 110838. https://doi.org/10.1016/j.compstruct.2019.04.010.
- Thanh, C.L., Ferreira, A.J.M. and Wahab, M.A. (2019c), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin-Wall. Struct., 145, 106427. https://doi.org/10.1016/j.tws.2019.106427.
- Thanh, C.L., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019d), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Method. Appl. M., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028.
- Vinyas, M. (2020a), "Computational Analysis of Smart Magneto-Electro-Elastic Materials and Structures: Review and Classification", Archiv. Comput. Method. Eng., 1-44. https://doi.org/10.1007/s11831-020-09406-4.
- Vinyas, M. (2020b)," Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study", Mater. Res. Express, 6(12), 125707. https://doi.org/10.1088/2053-1591/ab6649.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Vinyas, M. and Kattimani, S.C. (2017a), "A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.
- Vinyas, M. and Kattimani, S.C. (2017b), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015.
- Vinyas, M. and Kattimani, S.C. (2017c), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: a finite element study", Compos. Struct., 178, 63-86. https://doi.org/10.1016/j.compstruct.2017.06.068.
- Vinyas, M. and Kattimani, S.C. (2017d), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.481.
- Vinyas, M. and Kattimani, S.C. (2017e), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.
- Vinyas, M. and Kattimani, S.C. (2018a), "Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory", Compos. Struct., 202, 1339-1352. https://doi.org/10.1016/j.compstruct.2018.06.069.
- Vinyas, M. and Kattimani, S.C. (2018b), "Investigation of the effect of BaTiO3/CoFe2O4 particle arrangement on the static response of magneto-electro-thermo-elastic plates", Compos. Struct., 185, 51-64. https://doi.org/10.1016/j.compstruct.2017.10.073.
- Vinyas, M., Kattimani, S.C. and Joladarashi, S. (2018a), "Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods", J. Therm. Stresses, 41(8), 1063-1079. https://doi.org/10.1080/01495739.2018.1447856.
- Vinyas, M., Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018b), "Effect of BaTiO3/CoFe2O4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment", Mater. Res. Express, 5(12), 125702. https://doi.org/10.1088/2053-1591/aae0c8.
- Vinyas, M., Harursampath, D. and Kattimani, S.C. (2020a), "On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods", Defence Technology, articles in press. https://doi.org/10.1016/j.dt.2020.03.012.
- Vinyas, M., Harursampath, D. and Thoi, T.N. (2020b), "A higher order coupled frequency characteristics study of smart magneto-electro-elastic composite plates with cut-outs using finite element methods", Defence Technology, articles in press. https://doi.org/10.1016/j.dt.2020.02.009.
- Mahesh, V. and Kattimani, S. (2019), "Finite element simulation of controlled frequency response of skew multiphase magneto-electro-elastic plates", J. Intel. Mater. Syst. Struct., 30(12), 1757-1771. https://doi.org/10.1177/1045389X19843674.
- Vinyas, M., Harursampath, D. and Nguyen-Thoi, T. (2019), "Influence of active constrained layer damping on the coupled vibration response of functionally graded magneto-electro-elastic plates with skewed edges". Defence Technology, articles in press. https://doi.org/10.1016/j.dt.2019.11.016.
- Vinyas, M., Nischith, G., Loja, M.A.R., Ebrahimi, F. and Duc, N. D. (2019a), "Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory", Compos. Struct., 214, 132-142. https://doi.org/10.1016/j.compstruct.2019.02.010.
- Vinyas, M., Sandeep, A.S., Nguyen-Thoi, T., Ebrahimi, F. and Duc, D.N. (2019b), "A finite element-based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory", J. Intel. Mat. Syst. Str., 30(16), 2478-2501. https://doi.org/10.1177/1045389X19862386.
- Wang, G.F. and Feng, X.Q. (2007), "Effects of surface elasticity and residual surface tension on the natural frequency of microbeams", Appl. Phys. Lett., 90(23), 231904. https://doi.org/10.1063/1.2746950.
- Xiao, Y., Wen, J. and Wen, X. (2012), "Broadband locally resonant beams containing multiple periodic arrays of attached resonators", Phys. Lett. A, 376(16), 1384-1390. https://doi.org/10.1016/j.physleta.2012.02.059.
- Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress-based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Zhang, Z.J., Zhang, Q.C., Li, F.C., Yang, J.W., Liu, J.W., Liu, Z. Y. and Jin, F. (2019), "Modal characteristics of micro-perforated sandwich beams with square honeycomb-corrugation hybrid cores: A mixed experimental-numerical study", Thin-Walle. Struct., 137, 185-196. https://doi.org/10.1016/j.tws.2019.01.004 .
Cited by
- On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
- Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.663