DOI QR코드

DOI QR Code

An intelligent monitoring of greenhouse using wireless sensor networks

  • Touhami, Achouak (Laboratory of Energetic in arid zones, Department of Electrical Engineering, Faculty of Technology, Tahri Mohammed University) ;
  • Benahmed, Khelifa (Department of mathematics and computer science, Faculty of Exact Sciences, Tahri Mohammed University) ;
  • Parra, Lorena (Instituto de Investigacion para la Gestion Integrada de Zonas Costeras (IGIC), Universidad Politecnica de Valencia) ;
  • Bounaama, Fateh (Laboratory of Energetic in arid zones, Department of Electrical Engineering, Faculty of Technology, Tahri Mohammed University) ;
  • Lloret, Jaime (Instituto de Investigacion para la Gestion Integrada de Zonas Costeras (IGIC), Universidad Politecnica de Valencia)
  • Received : 2019.11.03
  • Accepted : 2020.04.30
  • Published : 2020.07.25

Abstract

Over recent years, the interest for vegetables and fruits in all seasons and places has much increased, from where diverse countries have directed to the commercial production in greenhouse. In this article, we propose an algorithm based on wireless sensor network technologies that monitor the microclimate inside a greenhouse and linear equations model for optimization plant production and material cost. Moreover, we also suggest a novel design of an intelligent greenhouse. We validate our algorithms with simulations on a benchmark based on experimental data made at lNRA of Montfavet in France. Finally, we calculate the statistical estimators RMSE, TSSE, MAPE, EF and R2. The results obtained are promising, which shows the efficiency of our proposed system.

Keywords

Acknowledgement

We would like to give special thanks to our colleagues Pr. Draoui Belkacem and Dr. Bourouis Amina from Tahri Mohamed University - Bechar, Algeria, for their helps and advices. Also, we would like to thank the team of ENERAGARID laboratory from Tahri Mohamed University - Bechar, Algeria. Last but not least, we would like to thank the anonymous reviewers for their valuable suggestions to improve the content and quality of our paper. This work has been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR and by the Conselleria de Educación, Cultura y Deporte with the Subvenciones para la contratación de personal investigador en fase postdoctoral, grant number APOSTD/2019/04

References

  1. Achouak, T., Khelifa, B., Garcia, L., Parra, L., Lloret, J. and Fateh, B. (2018), "Sensor network proposal for greenhouse automation placed at the south of Algeria", Netw. Protoc. Algorithms, 14 (4), 53-69, https://doi.org/10.5296/npa.v10i4.14155
  2. Ali, Q., Khan, M.T.I. and Khan, M.N.I. (2017), "Impact of energy efficiency improvement on greenhouse gas in off-season tomato farming: Evidence from Punjab, Pakistan", Adv. Energy Res., Int. J., 5 (3), 207-217. https://doi.org/10.12989/eri.2017.5.3.207
  3. Ali, R.B., Bouadila, S. and Mami, A. (2018), "Development of a fuzzy logic controller applied to an agricultural greenhouse experimentally validated", Appl. Therm., 141, 798-810. https://doi.org/10.1016/j.applthermaleng.2018.06.014
  4. Asadollahfardi, A., Heidarzadeh, N., Mosalli, A. and Sekhavati, A. (2018), "Optimization of water quality monitoring stations using genetic algorithm, a case study, Sefid-Rud River, Iran", Adv. Envron. Res., Int. J., 7(2), 87-107. https://dx.doi.org/10.12989/aer.2018.7.2.087
  5. Ataei, A., Hemmatabady, H. and Nobakht, S.Y. (2016), "Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses", Adv. Energy Res., Int. J., 4(1), 87-106. http://dx.doi.org/10.12989/eri.2016.4.1.087
  6. Canadas, J., Sanchez-Molina, J.A., Rodriguez, F. and del Aguila, I.M. (2017), "Improving automatic climate control with decision support techniques to minimize disease effects in greenhouse tomatoes", Inf. Process. Agr., 4(1), 50-63. http://dx.doi.org/10.1016/j.inpa.2016.12.002
  7. da Silva, L.M., Junior, E.H., Carneiro, K.J.P., de Matos, J.M., de Vieira, A.P.A.M.C. and da Silva Barreto, R. (2018), "Tellus - greenhouse irrigation automation system", IEEE Symposium on Computers and Communications (ISCC), pp. 1239-1242, Natal, Brazil, November. https://dx.dog.org/10.1109/ISCC.2018.8538494
  8. Dondapati, P.P and Rajulu, K.G. (2012), "An automated multi sensored green house management", Int. J. Technol. Expl. Learning (IJTEL), 1(1), 21-24.
  9. Draoui, B. (1994), "Characteristic and analysis of the thermohydric behaviour of a horticultural greenhouse", Ph.D. Dissertation, University of Nice-Sophia Antipolis, France.
  10. Enokela, A.J. and Othoigbe, T.O. (2015), "An automated greenhouse control system using Arduino prototyping platform", Aust. J. Eng. Res., 1-13.
  11. Fezari, M., Khati, A. and Boumaza, M.S. (2011), "Implementation of wireless sensors network for automatic greenhouse monitoring", 2011 International Conference on Communications, Computing and Control Applications (CCCA), Hammamet, Tunisia, September. https://dx.doi.org/10.1109/CCCA.2011.6031440
  12. Heinzelman, W., Chandrakasan, A. and Balakrishnan, H. (2000), "Energy-efficient communication protocol for wireless microsensor networks", Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, pp. 1-10, Manui, USA, August. https://doi.org/10.1109/HICSS.2000.926982
  13. Heinzelman, W., Chandrakasan, A. and Balakrishnan, H. (2002), "An application specific protocol architecture for wireless microsensor networks", IEEE T. Wirel. Commun., 1(4), 660-667. https://dx.doi.org/10.1109/TWC.2002.804190
  14. Kirk, D.E. (1998), Optimal Control Theory. An Introduction, Dover Publications, Inc., New York, USA.
  15. Kochhar, A. and Kumar, N. (2019), "Wireless sensor networks for greenhouses: an end-to-end review", Comput. Electron. Agr., 163, 104877. https://doi.org/10.1016/j.compag.2019.104877
  16. Kolokotsa, D., Saridakis, G., Dalamagkidis, K., Dolianitis, S. and Kaliakatsos, I. (2010), "Development of an intelligent indoor environment and energy management system for greenhouses", Energy Convers. Manag., 51(1), 155-168. http://dx.doi.org/10.1016/j.enconman.2009.09.007
  17. Liu, Y. and Bi, C. (2017), "The design of greenhouse monitoring system based on zigbee WSNs", Proceedings of the IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), pp. 430-433, Guangzhou, China, August. https://doi.org/10.1109/CSE-EUC.2017.268
  18. Lopez-Cruz, I.R., Fitz-Rodriguez, E., Torres-Monsivais, J.C., Trejo-Zuniga, E.C., Ruiz-Garcia, A. and Ramirez-Arias, A. (2014), "Control strategies of greenhouse climate for vegetables production", Biosystems Engineering: Biofactories for Food Production in the Century XXI, pp. 401-421. https://dx.doi.org/10.1007/978-3-319-03880-3_14
  19. Ma, D.D., Carpenter, N., Maki, H., Rehman, T.U., Tuinstra, M.R. and Jin, J. (2019a), "Greenhouse environment modeling and simulation for microclimate control", Comput. Electron. Agr., 162, 134-142. https://dx.doi.org/10.1016/j.compag.2019.04.013
  20. Ma, D.D., Carpenter, N., Amatya, S., Maki, H., Wang, L., Zhang, L., Neeno, S., Tuinstra, M.R. and Jin, J. (2019b), "Removal of greenhouse microclimate heterogeneity with conveyor system for indoor phenotyping", Comput. Electron. Agr., 166, 104979. https://dx.doi.org/10.1016/j.compag.2019.104979
  21. Maurya, P. and Kaur, A. (2016), "A survey on descendants of leach protocol ", Int. J. Info. Eng. Electron. Bus., 2, 46-58. https//dx.doi.org/10.5815/ijieeb.2016.02.06
  22. Ministry of Agriculture and Rural Development: Technical Institute of Vegetable and Industrial Crops (2015), Greenhouse tomato growing, Algeria.
  23. Mohammad, I. (2018), "A Survey on leach protocol and its enhanced version", Int. J. Comput. Appl., 182(13), 26-33. https://dx.doi.org/10.5120/ijca2018917767
  24. Ota, T., Iwasaki, Y., Nakano, A., Kuribara H. and Higashide, H. (2019), "Development of yield and harvesting time monitoring system for tomato greenhouse production", Eng. Agr. Envr. Food, 12 (1), 40-47. https://doi.org/10.1016/j.eaef.2018.09.003
  25. Park, D.H., Kang, B.J., Cho, K.R., Shin, C.S., Cho, S.E., Park, J.W. and Yang, W.M. (2011), "A study on greenhouse automatic control system based on wireless sensor network", Wirel. Pers. Commun., 56, 117-130. https://dx.doi.org/10.1007/s11277-009-9881-2
  26. Ramadhan, A.J. (2016), "Automatically maintain climatic conditions inside agricultural greenhouses", J. Eng., 22(11), 83-100.
  27. Salmabadi, H., Sarram, M.A. and Adibnia, F. (2015), "An Improvement on leach protocol (ez-leach)", Proceedings of the 2nd International Conference on Knowledge-Based Engineering and Innovation, 956-960, Tahran, Iran, November. https://dx.doi.org/10.1109/KBEI.2015.7436173
  28. Singh, M.C., Singh, J.P. and Singh, K.G. (2018), "Development of a microclimate model for prediction of temperatures inside a naturally ventilated greenhouse under cucumber crop in soilless media", Comput. Electron. Agr., 154, 227-238. https://doi.org/10.1016/j.compag.2018.08.044
  29. Somov, A., Shadrin, D., Nikitin, A., Matveev, S., Oseledets, I., Hrinchuk, O. and Fastovets, I. (2018), "Pervasive agriculture: IoT-enabled greenhouse for plant growth control", IEEE Pervas. Comput., 17, 65-75. http://dx.doi.org 10.1109/MPRV.2018.2873849
  30. Sri Jahnavi, V. and Ahamed, S.F. (2015), "Smart wireless sensor network for automated greenhouse", IETE J. Res., 61(2), 180-185. https://doi.org/10.1080/03772063.2014.999834
  31. Taki, M., Ajabshirchi, Y., Ranjbar, S.F., Rohani, A. and Matloobi, M. (2016), "Modeling and experimental validation of heat transfer and energy consumption in an innovative greenhouse structure", Inf. Process. Agr., 3(3), 157-174. http://dx.doi.org/10.1016/j.inpa
  32. Tap, F. (2000), "Economics-based optimal control of greenhouse tomato crop production", Ph.D. Dissertation, Wageningen University, The Netherlands.
  33. van Beveren, P.J.M. Bontsema, J., van Straten, G. and van Henten, E.J. (2019), "Optimal utilization of a boiler, combined heat and power installation, and heat buffers in horticultural greenhouses", Comput. Electron. Agr., 162, 1035-1048. https://doi.org/10.1016/j.compag.2019.05.040
  34. van Henten, E.J. (1994), "Greenhouse climate management: an optimal control approach", Ph.D. Dissertation, Wageningen University, The Netherlands.
  35. Vatari, S., Bakshi, A. amd Thakur, T. (2016), "Green house by using iot and cloud computing", Proceedings of IEEE International Conference on Recent Trends in Electronics Information Communication Technology, pp. 246-250, Bangalore, India, January. https://doi.org/10.1109/RTEICT.2016.7807821
  36. Wan, P., Toudeshki, A., Tan, H. and Ehsani, R. (2018), "A methodology for fresh tomato maturity detection using computer vision", Comput. Electron. Agr., 146, 43-50. https://dx.doi.org/10.1016/j.compag.2018.01.011
  37. Woli Ullah, M., Mortuza, M.G., Kabir, M.H., Ahmed, Z.U., Dey Supta, S.K., Das, P. and Hossain, S.M.D. (2018), "Internet of things based smart greenhouse: remote monitoring and automatic control", Proceedings of Joint International Conference on Energy, Ecology and Environment (ICEEE 2018) and International Conference on Electric and Intelligent Vehicles (ICEIV 2018), pp. 1-6, Melbourne, Australia, November.
  38. Xu, J., Dai, F., Xu, Y., Yao, C. and Li, C. (2019), "Wireless power supply technology for uniform magnetic field of intelligent greenhouse sensors". Comput. Electron. Agr., 156, 203-208. https://dx.doi.org/10.1016/j.compag.2018.11.014
  39. Yan-fang, S., Jian-guo, S. and Yu-qian, X. (2015), "Design and application of distributed intelligent greenhouse computerized system", Proceedings of the 7th International Conference on Measuring Technology and Mechatronics Automation, pp. 331-334, Nanchang, China, September. https://doi/org/10.1109/ICMTMA.2015.85
  40. Zarifneshat, S., Rohani, A., Ghassemzadeh, H.R., Sadeghi, M., Ahmadi, E. and Zarifneshat, M. (2012), "Predictions of apple bruise volume using artificial neural network", Comput. Electron. Agr., 82, 75-86. https://doi.org/10.1016/j.compag.2011.12.015

Cited by

  1. Smart and Solar Greenhouse Covers: Recent Developments and Future Perspectives vol.9, 2021, https://doi.org/10.3389/fenrg.2021.783587