참고문헌
- Ahmadi, H., Ab-Malek, K., Muhr, A. and Picken, J. (2013), "High damping seismic isolators- performance and historical development", Proceedings of the 13th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures - Commemorating JSSI 20th Anniversary, Sendai, Japan, September.
- Alberti, L. (2018), "Lessons from the past: some Greek Bronze Age responses to natural disasters and their modern counterparts", Ann. Geophys., 61, AC74. https://doi.org/10.4401/ag-8143
- Attanasi, G. and Auricchio, F. (2011), "Innovative superelastic isolation device", J. Earthq. Eng., 15(sup1), 72-89. https://doi.org/10.1080/13632469.2011.562406
- Attanasi, G., Auricchio, F., Crosti, C. and Fenves, G.L. (2008), "An innovative isolation bearing with shape memory alloys", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Attanasi, G., Auricchio, F. and Fenves, G.L. (2009), "Feasibility assessment of an innovative isolation bearing system with shape memory alloys", J. Earthq. Eng., 13(sup1), 18-39. https://doi.org/10.1080/13632460902813216.
- Bayraktar, A., Keypour, H. and Naderzadeh, A. (2012), "Application of Ancient Earthquake Resistant Method in Modern Construction Technology", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
- Bek, M., Oseli, A., Saprunov, I., Zhumagulov, B.T., Mian, S.M., Gusev, B.V., Zarnic, R., Bernstorff, B.V., Holecek, N. and Emri, I. (2013), "High pressure dissipative granular materials for earthquake protection of houses", Anali Pazu, 3(2), 79-86.
- Beltran, J.F., Cruz, C., Herrera, R. and Moroni, R. (2011), "Shape memory alloy CuAlBe strands subjected to cyclic axial loads", Eng. Struct. 33(10), 2910-2918. https://doi.org/10.1016/j.engstruct.2011.06.015
- Biggs, D.B. (2017), "Thermo-mechanical behavior and shakedown of shape memory alloy cable structure", Ph.D. Dissertation, University of Michigan, MI, USA.
- Botis, M. and Harbic, C. (2012), "A brief history upon seismic isolating systems", Bull. Transilvania Univ. Brasov- Series I: Eng. Sci., 5(54-1), 93-98.
- Calafell, R.L., Roschke, P.N. and De la Llera, J.C. (2010), "Optimized Friction Pendulum and Precast-Prestressed Pile to Base-Isolate a Chilean Masonry House", Bull. Earthq. Eng., 8(4). https://doi.org/1019-1036. 10.1007/s10518-009-9163-0
- Calvi, G.M., Calvi, P.M. and Moratti, M. (2017), "Seismic isolation of buildings using devices based on sliding between surfaces with variable friction coefficient", Innov. Infrastruct. Solut., 2(1), 39. https://doi.org/10.1007/s41062-017-0081-8
- Carboni, B., Lacarbonara, W. and Auricchio, F. (2015), "Hysteresis of multiconfiguration assemblies of Nitinol and steel strands: experiments and phenomenological identification", J. Eng. Mech., 141(3), 04014135. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000852
- Cardone, D., De Canio, G., Dolce, M., Marnetto, R., Moroni, C., Nicoletti, M., Nigro, D., Pizzari, A., Ponzo, F.C., Renzi, E., Santarsiero, G. and Spina, D. (2003), "Comparison of different passive control techniques through shaking table tests", Proceedings of the 8th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Yerevan, Armenia, October.
- Cardone, D., Palermo, G. and Narjabadifam, P. (2009), "Smart restorable sliding base isolation system for the aseismic control of structures", Proceedings of the 11th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Guangzhou, China, November.
- Cardone, D., Narjabadifam, P. and Nigro, D. (2011), "Shaking table tests of the Smart Restorable Sliding Base Isolation System (SRSBIS)", J. Earthq. Eng., 15(8), 1157-1177. https://doi.org/10.1080/13632469.2011.555057
- Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., Int. J., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
- Casciati, S. (2019), "SMA-based devices: insight across recent proposals toward civil engineering applications", Smart Struct. Syst., Int. J., 24(1), 111-125. https://doi.org/10.12989/sss.2019.24.1.111
- Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., Int. J., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073
- Casciati, F. and Van der Ejik, C. (2008), "Variability in mechanical properties and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., Int. J., 4(2), 103-121. https://doi.org/10.12989/sss.2008.4.2.103
- Casciati, F., Faravelli, L. and Hamdaoui, K. (2007), "Performance of a base isolator with shape memory alloy bars", Earthq. Eng. Eng. Vib., 6(4), 401-408. https://doi.org/10.1007/s11803-007-0787-2
- Casciati, S., Torra, V. and Vece, M. (2017), "Local effects induced by dynamic load self-heating in NiTi wires of shape memory alloys", Struct. Control Health Monit., 25(4), e2134. https://doi.org/10.1002/stc.2134
- Choi, E., Nam, T. and Cho, B.S. (2005), "A new concept of isolation bearings for highway steel bridges using shape memory alloys", Can. J. Civil Eng., 32(5), 957-967. https://doi.org/10.1139/l05-049
- Cladera, A., Weber, B., Leinenbach, C., Czaderski, C., Shahverdi, M. and Motavalli, M. (2014), "Iron-based shape memory alloys for civil engineering structures: an overview", J. Constr. Build. Mater., 63, 281-293. https://doi.org/10.1016/j.conbuildmat.2014.04.032
- Constantinou, M., Mokha, A. and Reinhorn, A. (1990), "Teflon bearings in base isolation. II Modeling", J. Struct. Eng., 116(2), 4551-4574. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(455)
- Dang, X.Z., Yang, H.L., Yuan, W.C. and Song, D.Q. (2013), "Experimental investigation on composite seismic isolation system", Adv. Mater. Res., 743, 146-149. https://doi.org/10.4028/www.scientific.net/AMR.743.146
- Davoodi, H., Frederick, A.J., Saffar, A. and Noori, M. (2001), "Building system using shape memory alloy elements", US Patent No. 6170202; United States Patent and Trademark Office, Alexandria, VA, USA.
- Demetriades, G.F., Constantinou, M.C. and Reinhorn, A.M. (1992), "Study of wire rope systems for seismic protection of equipment in building", Research Report No. NCEER-92-0012; National Center for Earthquake Engineering Research, State University of New York at Buffalo, Buffalo, New York, USA.
- Desroches, R., McCormick, J. and Delemont, M. (2004), "Cyclic properties of superelastic shape memory alloy wires and bars", J. Struct. Eng., 130(1), 38-46. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(38)
- Dickson, R. (2016), "The Evansian period of Knossos: inconvenient history and the world heritage list", Fabrications, 26(1), 102-120. https://doi.org/10.1080/10331867.2016.1131134
- Dolce, M. and Cardone, D. (2001), "Mechanical behavior of shape memory alloys for seismic applications: part 2- austenite NiTi wires subjected to tension", Int. J. Mech. Sci., 43(11), 2657-2677. https://doi.org/10.1016/S0020-7403(01)00050-9
- Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. Dyn., 29(7), 945-968. https://doi.org/10.1002/1096-9845(200007)29:7%3C945::AIDEQE958%3E3.0.CO;2-%23
- Dolce, M., Cardone, D., Ponzo, F.C. and Di Cesare, A. (2004), Design of Structures with Seismic Isolation: in Italian - Progetto di Edifici con Isolamento Sismico, IUSS Press, Pavia, Italy.
- Dolce, M., Cardone, D. and Croatto, F. (2005), "Frictional behavior of steel-PTFE interfaces for seismic isolation", Bull. Earthq. Eng., 3(1), 75-99. https://doi.org/10.1007/s10518-005-0187-9
- Failla, I. (2017), "Novel devices and strategies in earthquake protection of structures", Ph.D. Dissertation, University of Messina, Messina, Italy.
- Fallah, N. and Zamiri, G. (2013), "Multi-objective optimal design of sliding base isolation using genetic algorithm", Sci. Iran. A, 20(1), 87-96. https://doi.org/10.1016/j.scient.2012.11.004
- Fang, C., Yam, M.C.H., Lam, A.C.C. and Zhang, Y. (2015), "Feasibility study of shape memory alloy ring spring systems for self-centring seismic resisting devices", Smart Mater. Struct., 24, 1-19. http://dx.doi.org/10.1088/0964-1726/24/7/075024
- Fang, C., Zheng, Y., Chen, J., Yam, M.C.H. and Wang, W. (2019), "Superelastic NiTi SMA cables: Thermal-mechanical behavior, hysteretic modelling and seismic application", Eng. Struct., 183, 533-549. https://doi.org/10.1016/j.engstruct.2019.01.049
- Hedayati Dezfuli, F. and Shahria Alam, M. (2018), "Smart lead rubber bearings equipped with ferrous shape memory alloy wires for seismically isolating highway bridges", J. Earthq. Eng., 22(6), 1042-1067. https://doi.org/10.1080/13632469.2016.1269692
- Izumi, M. (1998), "State-of-the-art Report: Base isolation and passive seismic response control", Proceedings of the 9th World Conference Earthquake Engineering, Tokyo, Japan, August.
- Jalali, A., Cardone, D. and Narjabadifam, P. (2010), "Smart restorable sliding base isolation system", Bull. Earthq. Eng., 9(2), 657-673. https://doi.org/10.1007/s10518-010-9213-7
- JSSI (2016), SI-data-2016: until the end of 2015, Japan Society of Seismic Isolation (JSSI), Tokyo, Japan. www.jssi.or.jp/english/aboutus/database.html
- Kaptan, K. (2013), "Seismic base isolation and energy absorbing devices". Eur. Sci. J., 9(18), 41-54. http://dx.doi.org/10.19044/esj.2013.v9n18p%25p
- Khan, M.M. and Lagoudas, D. (2002), "Modeling of shape memory alloy pseudoelastic spring elements using Preisach model for passive vibration isolation", Proceedings of SPIE's 9th Annual International Symposium on Smart Structures and Materials, San Diego, CA, USA. https://doi.org/10.1117/12.475230
- Khodaverdian, A., Ghorbani-Tanha, K. and Rahimian, M. (2012), "An innovative base isolation system with Ni-Ti alloy and its application in seismic vibration control of Izadkhast Bridge", J. Intell. Mater. Syst. Struct., 23(8), 897-908. https://doi.org/10.1177%2F1045389X12440748 https://doi.org/10.1177/1045389X12440748
- Kitamura, K. (2016), "Mechanical property of Ti-Ni superelastic wire ropes", Trans. Mat. Res. Soc. Japan, 41(4), 355-358. https://doi.org/10.14723/tmrsj.41.355
- Krumme, R. and Hodgson, D.E. (1998), "Hysteretic damping apparati and method", US Patent No. 5842312; United States Patent and Trademark Office, Alexandria, VA, USA.
- Liu, Y., Wang, H., Qiu, C. and Zhao, X. (2019), "Seismic behavior of superelastic shape memory alloy spring in base isolation system of multi-story steel frame", Materials, 12(6), 997. https://doi.org/10.3390/ma12060997
- Mercuri, V. (2014), "Shape memory alloys strands: conventional 3D FEM modeling and simplified models", Ph.D. Dissertation, University of Pavia, Pavia, Italy.
- Monfared, H., Shirvani, A. and Nwaubani, S. (2013), "An investigation into the seismic base isolation from practical perspective", J. Civ. Struct. Eng., 3(3), 451-463. https://doi.org/10.6088/ijcser.201203013042
- Mostaghel, N. and Khodaverdian, M. (1987), "Dynamics of resilient-friction base isolator", Earthq. Eng. Struct. Dyn., 15(3), 379-390. https://doi.org/10.1002/eqe.4290150307
- Motavalli, M., Czaderski, C., Bergamini, A. and Janke, L. (2009), "Shape memory alloys for civil engineering structures - on the way from vision to reality", Archit. Civil Eng. Environ., 2(4), 81-94.
- Naeim, F. and Kelly, J.M. (1999), Design of Seismic Isolated Structures: from Theory to Practice, John Wiley & Sons, New York, USA.
- Narjabadifam, P. (2015), "Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS)", Proceedings of the 7th International Conference on Seismology and Earthquake Engineering, Tehran, Iran, May.
- Ozbulut, O.E. and Hurlebaus, S. (2010), "Evaluation of the performance of a sliding-type base isolation system with a NiTi shape memory alloy device considering temperature effects", Eng. Struct., 32(1), 238-249. https://doi.org/10.1016/j.engstruct.2009.09.010
- Ozbulut, O.E. and Silwal, B. (2014), "Performance of isolated buildings with superelastic-friction base isolators under high seismic hazards", Proceedings of Structures Congress 2014, Boston, MA, USA, April.
- Ozbulut, O.E. and Silwal, B. (2016), "Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes", Smart Struct. Syst., Int. J., 17(5), 709-724. https://doi.org/10.12989/sss.2016.17.5.709
- Ozbulut, O.E., Daghash, S. and Sherif, M.M. (2016), "Shape memory alloy cables for structural applications", J. Mater. Civ. Eng., 28(4), 04015176. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001457
- Panchal, V. and Jangid, R. (2009), "Seismic response of structures with variable friction pendulum system", J. Earthq. Eng., 13(2), 193-216. https://doi.org/10.1080/13632460802597786
- Reedlunn, B., Daly, S. and Shaw, J. (2013), "Superelastic shape memory alloy cables: Part I - Isothermal tension experiments", Int. J. Solids Struct., 50(20-21), 3009-3026. https://doi.org/10.1016/j.ijsolstr.2013.03.013
- Saadat, S., Salichs, J., Noori, M., Hou, Z., Davoodi, H., Bar-on, I., Suzuki, Y. and Masuda, A. (2002), "An overview of vibration and seismic applications of NiTi shape memory alloy", Smart Mater. Struct., 11(2), 218-229. PII: S0964-1726(02)33383-4 https://doi.org/10.1088/0964-1726/11/2/305
- Sakon, T. (2018), "Novel research for development of shape memory alloys", Metals, 8(2), 125. https://doi.org/10.3390/met8020125
- Sherif, M.M. and Ozbulut, O.E. (2018), "Tensile and superelastic fatigue characterization of NiTi shape memory cables", Smart Mater. Struct., 27(1), 015007. https://doi.org/10.1088/1361-665X/aa9819
- Shinozuka, M., Chaudhuri, S.R. and Mishra, S.K. (2015), "Shape-Memory-Alloy supplemented Lead Rubber Bearing (SMA-LRB) for seismic isolation", Probabilistic Eng. Mech., 41, 34-45. https://doi.org/10.1016/j.probengmech.2015.04.004
- Spizzuoco, M. (2017), "Study of wire rope devices for improving the re-centering capability of base isolated buildings", Struct. Control Health Monit., 24(6), e1928. https://doi.org/10.1002/stc.1928
- Torra, V., Isalgue, A., Martorell, F., Terriault, P. and Lovey, F.C. (2007), "Built in dampers for family homes via SMA: An ANSYS computation scheme based on mesoscopic and microscopic experimental analyses", Eng. Struct., 29(8), 1889-1902. https://doi.org/10.1016/j.engstruct.2006.08.028
- Torra, V., Isalgue, A., Auguet, C., Carreras, G., Lovey, F.C., Soul, H. and Terriault, P. (2009), "Damping in Civil Engineering Using SMA. The Fatigue Behavior and Stability of CuAlBe and NiTi Alloys", J. of Materi. Eng. and Perform., 18, 738-745. https://doi.org/10.1007/s11665-009-9442-6
- Torra, V., Isalgue, A., Martorell, F., Terriault, P. and Lovey, F.C. (2014), "On the NiTi wires in dampers for stayed cables", Smart Struct. Syst., Int. J., 13(3), 353-374. http://dx.doi.org/10.12989/sss.2014.13.3.353
- Torra, V., Isalgue, A., Lovey, F.C. and Sade, M. (2015), "Shape memory alloys as an effective tool to damp oscillations", J. Therm. Anal. Calorim., 119(3), 1475-1533. https://doi.org/10.1007/s10973-015-4405-7
- Van Humbeeck, J. (1999), "Non-medical applications of shape memory alloys", Mater. Sci. Eng. A, 273-275, 134-148. https://doi.org/10.1016/S0921-5093(99)00293-2
- Villaverde, R. (2017), "Base isolation with sliding hydromagnetic bearings: concept and feasibility study", Struct. Infrastruct. Eng., 13(6), 709-721. https://doi.org/10.1080/15732479.2016.1187634
- Wang, B. and Zhu, S. (2018), "Superelastic SMA U-shaped dampers with self-centering functions", Smart Mater. Struct., 27(5), 055003. https://doi.org/10.1088/1361-665X/aab52d
- Wang, W., Fang, C. and Liu, J. (2016), "Large size superelastic SMA bars: heat treatment strategy, mechanical property and seismic application", Smart Mater. Struct., 25(7), 075001. http://dx.doi.org/10.1088/0964-1726/25/7/075001
- Wen, Y.H., Peng, H.B., Raabe, D., Gutierrez-Urrutia, I., Chen, J. and Du, Y.Y. (2014), "Large recovery strain in Fe-Mn-Si based shape memory steels obtained by engineering annealing twin boundaries", Nat. Commun., 5, 4964. https://doi.org/10.1038/ncomms5964
- Wilde, K., Gardoni, P. and Fujino, Y. (1997), "Seismic response of base-isolated structures with shape memory alloy damping devices", Proceedings of SPIE's Smart Structures and Materials '97, San Diego, CA, USA, March.
- Zheng, Y. and Dong, Y. (2017), "Comparative seismic performance of conventional and resilient bridges with SMAcable-based frictional sliding bearings", Proceedings of the 2017 World Congress on Advances in Structural Engineering and Mechanics (ASEM17), Seoul, Korea, August-September.
- Zheng, Y., Dong, Y. and Li, Y. (2018), "Resilience and life-cycle performance of smart bridges with shape memory alloy (SMA)-cable-based bearings", Constr. Build. Mater., 158, 389-400. https://doi.org/10.1016/j.conbuildmat.2017.10.031
- Zheng, Y., Dong, Y., Chen, B. and Anwar, G.A. (2019), "Seismic damage mitigation of bridges with self-adaptive SMA-cablebased bearings", Smart Struct. Syst., Int. J., 24(1), 127-139. https://doi.org/10.12989/sss.2019.24.1.127