DOI QR코드

DOI QR Code

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan (Department of Civil Engineering, Shanghai University) ;
  • Li, Chunxiang (Department of Civil Engineering, Shanghai University) ;
  • Chen, Xu (Department of Civil Engineering, Shanghai University)
  • 투고 : 2019.09.13
  • 심사 : 2020.04.09
  • 발행 : 2020.07.25

초록

This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.

키워드

과제정보

This study is supported by the National Natural Science Foundation of China (Grant No. 51978391).

참고문헌

  1. Anajafi, H. and Medina, R.A. (2018), "Comparison of the seismic performance of a partial mass isolation technique with conventional TMD and base-isolation systems under broad-band and narrow-band excitations", Eng. Struct., 158, 110-123. https://doi.org/10.1016/j.engstruct.2017.12.018
  2. Bozer, A. and Ozsariyildiz, S.S. (2018), "Free parameter search of multiple tuned mass dampers by using artificial bee colony algorithm", Struct. Control Health Monit., 25(2), e2066. https://doi.or g/10.1002/stc.2066
  3. Cao, L. and Li, C. (2019), "Tuned tandem mass dampers-inerters with broadband high effectiveness for structures under white noise base excitations", Struct. Control Health Monit., 26(4), e2319. https://doi.org/10.1002/stc.2319
  4. Chung, L.-L., Wu, L.-Y., Yang, C.-S.W., Lien, K.-H., Lin, M.-C. and Huang, H.-H. (2013), "Optimal design formulas for viscous tuned mass dampers in wind-excited structures", Struct. Control Health Monit., 20(3), 320-336. https://doi.org/10.1002/stc.496
  5. Daniel, Y. and Lavan, O. (2014), "Gradient based optimal seismic retrofitting of 3D irregular buildings using multiple tuned mass dampers", Comput. Struct., 139, 84-97. https://doi.org/10.1016/j.compstruc.2014.03.002
  6. Daniel, Y., Lavan, O. and Levy, R. (2012), "Multiple-tuned mass dampers for multimodal control of pedestrian bridges", J. Struct. Eng. ASCE, 138(9), 1173-1178. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000527
  7. De Domenico, D. and Ricciardi, G. (2018a), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011
  8. De Domenico, D. and Ricciardi G. (2018b), "Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: A comparative study", Struct. Control Health Monit., 25, e2234. https://doi.org/10.1002/stc.2234
  9. De Domenico, D. and Ricciardi, G. (2018c), "Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems", Earthq. Eng. Struct. Dyn., 47(12), 2539-2560. https://doi.org/10.1002/eqe.3098
  10. De Domenico, D., Impollonia, N. and Ricciardi, G. (2018), "Soildependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper", Soil Dyn. Earthq. Eng., 105, 37-53. https://doi.org/10.1016/j.soildyn.2017.11.023
  11. Dehghan-Niri, E., Zahrai, S.M. and Mohtat, A. (2010), "Effectiveness-robustness objectives in MTMD system design: An evolutionary optimal design methodology", Struct. Control Health Monit., 17, 218-236. https://doi.org/10.1002/stc.297
  12. Dinh, V.-N. and Basu, B. (2015), "Passive control of floating offshore wind turbine nacelle and spar vibrations by multiple tuned mass dampers", Struct. Control Health Monit., 22, 152-176. https://doi.org/10.1002/stc.1666
  13. Fadel Miguel, L.F., Lopez, R.H., Miguel, L.F.F. and Torii, A.J. (2016), "A novel approach to the optimum design of MTMDs under seismic excitations", Struct. Control Health Monit., 23(11), 1290-1313. https://doi.org/10.1002/stc.1845
  14. Fu, T.S. and Johnson, E.A. (2011), "Distributed mass damper system for integrating structural and environmental controls in buildings", J. Eng. Mech. ASCE, 137(3), 205-213. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000211
  15. Garrido, H., Curadelli, O. and Ambrosini, D. (2013), "Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper", Eng. Struct., 56, 2149-2153. https://doi.org/10.1016/j.engstruct.2013.08.044
  16. Giaralis, A. and Petrini, F. (2017), "Wind-induced vibration mitigation in tall buildings using the tuned mass-damperinerter", J. Struct. Eng. ASCE, 143(9), 04017127. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001863
  17. Giaralis, A. and Taflanidis, A.A. (2018), "Optimal tuned massdamper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria", Struct. Control Health Monit., 25, e2082. https://doi.org/10.1002/stc.2082
  18. Gonzalez-Buelga, A., Clare, L.R., Neild, S.A, Jiang, J.Z. and Inman, D.J. (2015), "An electromagnetic inerter-based vibration suppression device", Smart Mater. Struct., 24(5), 055015. https://doi.org/10.1088/0964-1726/24/5/055015
  19. Han, B. and Li, C. (2008), "Characteristics of linearly distributed parameter-based multiple-tuned mass dampers", Struct. Control Health Monit., 15(6), 839-856. https://doi.org/10.1002/stc.222
  20. Hessabi, R.M. and Mercan, O. (2016), "Investigations of the application of gyro-mass dampers with various types of supplemental dampers for vibration control of building structures", Eng. Struct., 126, 174-186. https://doi.org/10.1016/j.engstruct.2016.07.045
  21. Hoang, N. and Warnitchai, P. (2005), "Design of multiple tuned mass dampers by using a numerical optimizer", Earthq. Eng. Struct. Dyn., 34(2), 125-144. https://doi.org/10.1002/eqe.413
  22. Hu, Y.L., Chen, M.Z.Q., Shu, Z. and Huang, L.X. (2015), "Analysis and optimisation for inerter-based isolators via fixedpoint theory and algebraic solution", J. Sound Vib., 346, 17-36. https://doi.org/10.1016/j.jsv.2015.02.041
  23. Hu, Y., Wang, J., Chen, M.Z.Q., Li, Z.H. and Sun, Y. (2018), "Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control", Eng. Struct., 177, 198-209. https://doi.org/10.1016/j.engstruct.2018.09.063
  24. Hwang, J.-S., Kim, J. and Kim, Y-M. (2007), "Rotational inertia dampers with toggle bracing for vibration control of a building structure", Eng. Struct., 29, 1201-1208. https://doi.org/10.1016/j.engstruct.2006.08.005
  25. Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. Dyn., 41(3), 453-474. https://doi.org/10.1002/eqe.1138
  26. Jangid, R.S. (1995), "Dynamic characteristics of structures with multiple tuned mass dampers", Struct. Eng. Mech., Int. J., 3(5), 497-509. https://doi.org/10.12989/sem.1995.3.5.497
  27. Jangid, R.S. (1999), "Optimum multiple tuned mass dampers for base-excited undamped system", Earthq. Eng. Struct. Dyn., 28(9), 1041-1049. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<1041::AID-EQE853>3.0.CO;2-E
  28. Javidialesaadia, A. and Wierschemb, N.E. (2018), "Optimal design of rotational inertial double tuned mass dampers under random excitation", Eng. Struct., 165, 412-421. https://doi.org/10.1016/j.engstruct.2018.03.033
  29. Jokic, M., Stegic, M. and Butkovic, M. (2011), "Reduced-order multiple tuned mass damper optimization: A bounded real lemma for descriptor systems approach", J. Sound Vib., 330 (22), 5259-5268. https://doi.org/10.1016/j.jsv.2011.06.005
  30. Krenk, S. and Hogsberg, J.B. (2016), "Tuned resonant mass or inerter-based absorbers: unified calibration with quasi-dynamic flexibility and inertia correction", Proc. R. Soc. A, 472(2185), 20150718. https://doi.org/10.1098/rspa.2015.0718
  31. Lazar, I.F., Neild, S.A. and Wagg, D.J. (2014), "Using an inerterbased device for structural vibration suppression", Earthq. Eng. Struct. Dyn., 43(8), 1129-1147. https://doi.org/10.1002/eqe.2390
  32. Li, C. (2000), "Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration", Earthq. Eng. Struct. Dyn., 29(9), 1405-1421. https://doi.org/10.1002/1096-9845(200009)29:9<1405::AID-EQE976>3.0.CO;2-4
  33. Li, C. (2002), "Optimum multiple tuned mass dampers for structures under the ground acceleration based on DDMF and ADMF", Earthq. Eng. Struct. Dyn., 31(4), 897-919. https://doi.org/10.1002/eqe.128
  34. Li, C. and Liu, Y. (2003), "Optimum multiple tuned mass dampers for structures under ground acceleration based on the uniform distribution of system parameters", Earthq. Eng. Struct. Dyn., 32(5), 671-690. https://doi.org/10.1002/eqe.239
  35. Li, H.-N. and Ni, X.-L. (2007), "Optimization of non-uniformly distributed multiple tuned mass damper", J. Sound Vib., 308(1-2), 80-97. https://doi.org/10.1016/j.jsv.2007.07.014
  36. Lin, C.-C., Wang, J.-F., Lien, C.-H., Chiang, H.-W. and Lin, C.-S. (2010), "Optimum design and experimental study of multiple tuned mass dampers with limited stroke", Earthq. Eng. Struct. Dyn., 39(14), 1631-1651. https://doi.org/10.1002/eqe.1008
  37. Lin, C.-C., Lin, G.-L. and Chiu, K.-C. (2017), "Robust design strategy for multiple tuned mass dampers with consideration of frequency bandwidth", Int. J. Struct. Stab. Dyn., 17(1), 1750002. https://doi.org/10.1142/S021945541750002X
  38. Liu, X., Jiang, J.Z., Titurus, B. and Harrison, A. (2018), "Model identification methodology for fluid-based inerters", Mech. Syst. Signal Process., 106, 479-494. https://doi.org/10.1016/j.ymssp.2018.01.018
  39. Lu, X., Zhang, Qi, Weng, D., Zhou, Z., Wang, S., Mahin, S.A., Ding, S. and Qian, F. (2017), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct. Control Health Monit., 24(3), e1882. https://doi.org/10.1002/stc.1882
  40. Ma, R., Bi, K. and Hao, H. (2018), "Mitigation of heave response of semi-submersible platform (SSP) using tuned heave plate inerter (THPI)", Eng. Struct., 177, 357-373. https://doi.org/10.1016/j.engstruct.2018.09.085
  41. Ma, R., Bi, K. and Hao, H. (2019), "A novel rotational inertia damper for heave motion suppression of semisubmersible platform in the shallow sea", Struct. Control Health Monit., 26, e2368. https://doi.org/10.1002/stc.2368
  42. Makris, N. and Kampas, G. (2016), "Seismic protection of structures with supplemental rotational inertia", J. Eng. Mech. ASCE, 142(11), 04016089. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001152
  43. Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probabilistic Eng. Mech., 38, 156-164. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001152
  44. Mohebbi, M., Shakeri, K., Ghanbarpour, Y. and Majzoub, H. (2013), "Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures", J. Vib. Control, 19(4), 605-625. https://doi.org/10.1177/1077546311434520
  45. Nakamura, Y., Fukukita. A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. Dyn., 43(4), 507-527. https://doi.org/10.1002/eqe.2355
  46. Pan, C. and Zhang, R. (2018), "Design of structure with inerter system based on stochastic response mitigation ratio", Struct. Control Health Monit., 25(6), e2169. https://doi.org/10.1002/stc.2169
  47. Pan, C., Zhang, R.F., Luo, H., Li, C. and Shen, H. (2018), "Demand-based optimal design of oscillator with parallel-layout viscous inerter damper", Struct. Control Health Monit., 25(1), e2051. https://doi.org/10.1002/stc.2051
  48. Papadimitriou, C., Katafygiotis, L. and Au, S.K. (1997), "Effects of structural uncertainties on TMD design: A reliability-based approach", Struct. Struct Control Health Monit., 4(1), 65-88. https://doi.org/10.1002/stc.4300040108
  49. Pietrosanti, D., De Angelis, M. and Basili, M. (2017), "Optimal design and performance evaluation of systems with tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 46(8), 1367-1388. https://doi.org/10.1002/eqe.2861
  50. Ruiz, R., Taflanidis, A.A., Giaralis, A. and Lopez-Garcia, D. (2018), "Risk-informed optimization of the tuned mass-damperinerter (TMDI) for the seismic protection of multi-storey building structures", Eng. Struct., 177, 836-850. https://doi.org/10.1016/j.engstruct.2018.08.074
  51. Siami, A., Karimi, H.R., Cigada, A., Zappa, E. and Sabbioni, E. (2018), "Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pieta", Mech. Syst. Signal Process, 98, 667-683. https://doi.org/10.1016/j.ymssp.2017.05.030
  52. Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter", IEEE Trans. Autom. Contr., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532
  53. Takehiko, A., Yoshikazu, A. and Kohju, I. (2018), "Structural control with tuned inertial mass electromagnetic transducers", Struct. Control Health Monit., 25, e2059. https://doi.org/10.1002/stc.2059
  54. Tong, X. and Zhao, X. (2018), "Passive vibration control of the SCOLE beam system", Struct. Control Health Monit., 25, e2204. https://doi.org/10.1002/stc.2204
  55. Wang, J.F., Lin, C.C. and Chen, B.L. (2005), "Vibration suppression for high-speed railway bridges using tuned mass dampers", Int. J. Solids Struct., 42(2), 465-491. https://doi.org/10.1016/S0020-7683(02)00589-9
  56. Wang, F., Hong, M. and Lin, T. (2010), "Designing and testing a hydraulic inerter", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 225(1), 66-72. https://doi.org/10.1243/09544062JMES2199
  57. Wen, Y., Chen, Z. and Hua, X. (2017), "Design and evaluation of tuned inerter-based dampers for the seismic control of MDOF structures", J. Struct. Eng. ASCE, 143(4), 04016207. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001680
  58. Xu, K., Bi, K., Han, Q., Li, X. and Du, X. (2019), "Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study", Eng. Struct., 182, 101-111. https://doi.org/10.1016/j.engstruct.2018.12.067
  59. Zhang, R., Zhao, Z. and Dai, K. (2019), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct.2018.11.020
  60. Zuo, H., Bi, K. and Hao, H. (2017), "Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards", Eng. Struct., 141, 303-315. https://doi.org/10.1016/j.engstruct.2017.03.006

피인용 문헌

  1. Input energy reduction principle of structures with generic tuned mass damper inerter vol.28, pp.1, 2020, https://doi.org/10.1002/stc.2644
  2. Optimum Double Mass Tuned Damper Inerter for Control of Structure Subjected to ground motions vol.44, 2020, https://doi.org/10.1016/j.jobe.2021.103259