Acknowledgement
This study is supported by the National Natural Science Foundation of China (Grant No. 51978391).
References
- Anajafi, H. and Medina, R.A. (2018), "Comparison of the seismic performance of a partial mass isolation technique with conventional TMD and base-isolation systems under broad-band and narrow-band excitations", Eng. Struct., 158, 110-123. https://doi.org/10.1016/j.engstruct.2017.12.018
- Bozer, A. and Ozsariyildiz, S.S. (2018), "Free parameter search of multiple tuned mass dampers by using artificial bee colony algorithm", Struct. Control Health Monit., 25(2), e2066. https://doi.or g/10.1002/stc.2066
- Cao, L. and Li, C. (2019), "Tuned tandem mass dampers-inerters with broadband high effectiveness for structures under white noise base excitations", Struct. Control Health Monit., 26(4), e2319. https://doi.org/10.1002/stc.2319
- Chung, L.-L., Wu, L.-Y., Yang, C.-S.W., Lien, K.-H., Lin, M.-C. and Huang, H.-H. (2013), "Optimal design formulas for viscous tuned mass dampers in wind-excited structures", Struct. Control Health Monit., 20(3), 320-336. https://doi.org/10.1002/stc.496
- Daniel, Y. and Lavan, O. (2014), "Gradient based optimal seismic retrofitting of 3D irregular buildings using multiple tuned mass dampers", Comput. Struct., 139, 84-97. https://doi.org/10.1016/j.compstruc.2014.03.002
- Daniel, Y., Lavan, O. and Levy, R. (2012), "Multiple-tuned mass dampers for multimodal control of pedestrian bridges", J. Struct. Eng. ASCE, 138(9), 1173-1178. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000527
- De Domenico, D. and Ricciardi, G. (2018a), "An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011
- De Domenico, D. and Ricciardi G. (2018b), "Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: A comparative study", Struct. Control Health Monit., 25, e2234. https://doi.org/10.1002/stc.2234
- De Domenico, D. and Ricciardi, G. (2018c), "Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems", Earthq. Eng. Struct. Dyn., 47(12), 2539-2560. https://doi.org/10.1002/eqe.3098
- De Domenico, D., Impollonia, N. and Ricciardi, G. (2018), "Soildependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper", Soil Dyn. Earthq. Eng., 105, 37-53. https://doi.org/10.1016/j.soildyn.2017.11.023
- Dehghan-Niri, E., Zahrai, S.M. and Mohtat, A. (2010), "Effectiveness-robustness objectives in MTMD system design: An evolutionary optimal design methodology", Struct. Control Health Monit., 17, 218-236. https://doi.org/10.1002/stc.297
- Dinh, V.-N. and Basu, B. (2015), "Passive control of floating offshore wind turbine nacelle and spar vibrations by multiple tuned mass dampers", Struct. Control Health Monit., 22, 152-176. https://doi.org/10.1002/stc.1666
- Fadel Miguel, L.F., Lopez, R.H., Miguel, L.F.F. and Torii, A.J. (2016), "A novel approach to the optimum design of MTMDs under seismic excitations", Struct. Control Health Monit., 23(11), 1290-1313. https://doi.org/10.1002/stc.1845
- Fu, T.S. and Johnson, E.A. (2011), "Distributed mass damper system for integrating structural and environmental controls in buildings", J. Eng. Mech. ASCE, 137(3), 205-213. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000211
- Garrido, H., Curadelli, O. and Ambrosini, D. (2013), "Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper", Eng. Struct., 56, 2149-2153. https://doi.org/10.1016/j.engstruct.2013.08.044
- Giaralis, A. and Petrini, F. (2017), "Wind-induced vibration mitigation in tall buildings using the tuned mass-damperinerter", J. Struct. Eng. ASCE, 143(9), 04017127. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001863
- Giaralis, A. and Taflanidis, A.A. (2018), "Optimal tuned massdamper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria", Struct. Control Health Monit., 25, e2082. https://doi.org/10.1002/stc.2082
- Gonzalez-Buelga, A., Clare, L.R., Neild, S.A, Jiang, J.Z. and Inman, D.J. (2015), "An electromagnetic inerter-based vibration suppression device", Smart Mater. Struct., 24(5), 055015. https://doi.org/10.1088/0964-1726/24/5/055015
- Han, B. and Li, C. (2008), "Characteristics of linearly distributed parameter-based multiple-tuned mass dampers", Struct. Control Health Monit., 15(6), 839-856. https://doi.org/10.1002/stc.222
- Hessabi, R.M. and Mercan, O. (2016), "Investigations of the application of gyro-mass dampers with various types of supplemental dampers for vibration control of building structures", Eng. Struct., 126, 174-186. https://doi.org/10.1016/j.engstruct.2016.07.045
- Hoang, N. and Warnitchai, P. (2005), "Design of multiple tuned mass dampers by using a numerical optimizer", Earthq. Eng. Struct. Dyn., 34(2), 125-144. https://doi.org/10.1002/eqe.413
- Hu, Y.L., Chen, M.Z.Q., Shu, Z. and Huang, L.X. (2015), "Analysis and optimisation for inerter-based isolators via fixedpoint theory and algebraic solution", J. Sound Vib., 346, 17-36. https://doi.org/10.1016/j.jsv.2015.02.041
- Hu, Y., Wang, J., Chen, M.Z.Q., Li, Z.H. and Sun, Y. (2018), "Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control", Eng. Struct., 177, 198-209. https://doi.org/10.1016/j.engstruct.2018.09.063
- Hwang, J.-S., Kim, J. and Kim, Y-M. (2007), "Rotational inertia dampers with toggle bracing for vibration control of a building structure", Eng. Struct., 29, 1201-1208. https://doi.org/10.1016/j.engstruct.2006.08.005
- Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. Dyn., 41(3), 453-474. https://doi.org/10.1002/eqe.1138
- Jangid, R.S. (1995), "Dynamic characteristics of structures with multiple tuned mass dampers", Struct. Eng. Mech., Int. J., 3(5), 497-509. https://doi.org/10.12989/sem.1995.3.5.497
- Jangid, R.S. (1999), "Optimum multiple tuned mass dampers for base-excited undamped system", Earthq. Eng. Struct. Dyn., 28(9), 1041-1049. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<1041::AID-EQE853>3.0.CO;2-E
- Javidialesaadia, A. and Wierschemb, N.E. (2018), "Optimal design of rotational inertial double tuned mass dampers under random excitation", Eng. Struct., 165, 412-421. https://doi.org/10.1016/j.engstruct.2018.03.033
- Jokic, M., Stegic, M. and Butkovic, M. (2011), "Reduced-order multiple tuned mass damper optimization: A bounded real lemma for descriptor systems approach", J. Sound Vib., 330 (22), 5259-5268. https://doi.org/10.1016/j.jsv.2011.06.005
- Krenk, S. and Hogsberg, J.B. (2016), "Tuned resonant mass or inerter-based absorbers: unified calibration with quasi-dynamic flexibility and inertia correction", Proc. R. Soc. A, 472(2185), 20150718. https://doi.org/10.1098/rspa.2015.0718
- Lazar, I.F., Neild, S.A. and Wagg, D.J. (2014), "Using an inerterbased device for structural vibration suppression", Earthq. Eng. Struct. Dyn., 43(8), 1129-1147. https://doi.org/10.1002/eqe.2390
- Li, C. (2000), "Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration", Earthq. Eng. Struct. Dyn., 29(9), 1405-1421. https://doi.org/10.1002/1096-9845(200009)29:9<1405::AID-EQE976>3.0.CO;2-4
- Li, C. (2002), "Optimum multiple tuned mass dampers for structures under the ground acceleration based on DDMF and ADMF", Earthq. Eng. Struct. Dyn., 31(4), 897-919. https://doi.org/10.1002/eqe.128
- Li, C. and Liu, Y. (2003), "Optimum multiple tuned mass dampers for structures under ground acceleration based on the uniform distribution of system parameters", Earthq. Eng. Struct. Dyn., 32(5), 671-690. https://doi.org/10.1002/eqe.239
- Li, H.-N. and Ni, X.-L. (2007), "Optimization of non-uniformly distributed multiple tuned mass damper", J. Sound Vib., 308(1-2), 80-97. https://doi.org/10.1016/j.jsv.2007.07.014
- Lin, C.-C., Wang, J.-F., Lien, C.-H., Chiang, H.-W. and Lin, C.-S. (2010), "Optimum design and experimental study of multiple tuned mass dampers with limited stroke", Earthq. Eng. Struct. Dyn., 39(14), 1631-1651. https://doi.org/10.1002/eqe.1008
- Lin, C.-C., Lin, G.-L. and Chiu, K.-C. (2017), "Robust design strategy for multiple tuned mass dampers with consideration of frequency bandwidth", Int. J. Struct. Stab. Dyn., 17(1), 1750002. https://doi.org/10.1142/S021945541750002X
- Liu, X., Jiang, J.Z., Titurus, B. and Harrison, A. (2018), "Model identification methodology for fluid-based inerters", Mech. Syst. Signal Process., 106, 479-494. https://doi.org/10.1016/j.ymssp.2018.01.018
- Lu, X., Zhang, Qi, Weng, D., Zhou, Z., Wang, S., Mahin, S.A., Ding, S. and Qian, F. (2017), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct. Control Health Monit., 24(3), e1882. https://doi.org/10.1002/stc.1882
- Ma, R., Bi, K. and Hao, H. (2018), "Mitigation of heave response of semi-submersible platform (SSP) using tuned heave plate inerter (THPI)", Eng. Struct., 177, 357-373. https://doi.org/10.1016/j.engstruct.2018.09.085
- Ma, R., Bi, K. and Hao, H. (2019), "A novel rotational inertia damper for heave motion suppression of semisubmersible platform in the shallow sea", Struct. Control Health Monit., 26, e2368. https://doi.org/10.1002/stc.2368
- Makris, N. and Kampas, G. (2016), "Seismic protection of structures with supplemental rotational inertia", J. Eng. Mech. ASCE, 142(11), 04016089. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001152
- Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probabilistic Eng. Mech., 38, 156-164. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001152
- Mohebbi, M., Shakeri, K., Ghanbarpour, Y. and Majzoub, H. (2013), "Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures", J. Vib. Control, 19(4), 605-625. https://doi.org/10.1177/1077546311434520
- Nakamura, Y., Fukukita. A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. Dyn., 43(4), 507-527. https://doi.org/10.1002/eqe.2355
- Pan, C. and Zhang, R. (2018), "Design of structure with inerter system based on stochastic response mitigation ratio", Struct. Control Health Monit., 25(6), e2169. https://doi.org/10.1002/stc.2169
- Pan, C., Zhang, R.F., Luo, H., Li, C. and Shen, H. (2018), "Demand-based optimal design of oscillator with parallel-layout viscous inerter damper", Struct. Control Health Monit., 25(1), e2051. https://doi.org/10.1002/stc.2051
- Papadimitriou, C., Katafygiotis, L. and Au, S.K. (1997), "Effects of structural uncertainties on TMD design: A reliability-based approach", Struct. Struct Control Health Monit., 4(1), 65-88. https://doi.org/10.1002/stc.4300040108
- Pietrosanti, D., De Angelis, M. and Basili, M. (2017), "Optimal design and performance evaluation of systems with tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 46(8), 1367-1388. https://doi.org/10.1002/eqe.2861
- Ruiz, R., Taflanidis, A.A., Giaralis, A. and Lopez-Garcia, D. (2018), "Risk-informed optimization of the tuned mass-damperinerter (TMDI) for the seismic protection of multi-storey building structures", Eng. Struct., 177, 836-850. https://doi.org/10.1016/j.engstruct.2018.08.074
- Siami, A., Karimi, H.R., Cigada, A., Zappa, E. and Sabbioni, E. (2018), "Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pieta", Mech. Syst. Signal Process, 98, 667-683. https://doi.org/10.1016/j.ymssp.2017.05.030
- Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter", IEEE Trans. Autom. Contr., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532
- Takehiko, A., Yoshikazu, A. and Kohju, I. (2018), "Structural control with tuned inertial mass electromagnetic transducers", Struct. Control Health Monit., 25, e2059. https://doi.org/10.1002/stc.2059
- Tong, X. and Zhao, X. (2018), "Passive vibration control of the SCOLE beam system", Struct. Control Health Monit., 25, e2204. https://doi.org/10.1002/stc.2204
- Wang, J.F., Lin, C.C. and Chen, B.L. (2005), "Vibration suppression for high-speed railway bridges using tuned mass dampers", Int. J. Solids Struct., 42(2), 465-491. https://doi.org/10.1016/S0020-7683(02)00589-9
- Wang, F., Hong, M. and Lin, T. (2010), "Designing and testing a hydraulic inerter", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 225(1), 66-72. https://doi.org/10.1243/09544062JMES2199
- Wen, Y., Chen, Z. and Hua, X. (2017), "Design and evaluation of tuned inerter-based dampers for the seismic control of MDOF structures", J. Struct. Eng. ASCE, 143(4), 04016207. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001680
- Xu, K., Bi, K., Han, Q., Li, X. and Du, X. (2019), "Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study", Eng. Struct., 182, 101-111. https://doi.org/10.1016/j.engstruct.2018.12.067
- Zhang, R., Zhao, Z. and Dai, K. (2019), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct.2018.11.020
- Zuo, H., Bi, K. and Hao, H. (2017), "Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards", Eng. Struct., 141, 303-315. https://doi.org/10.1016/j.engstruct.2017.03.006
Cited by
- Input energy reduction principle of structures with generic tuned mass damper inerter vol.28, pp.1, 2020, https://doi.org/10.1002/stc.2644
- Optimum Double Mass Tuned Damper Inerter for Control of Structure Subjected to ground motions vol.44, 2020, https://doi.org/10.1016/j.jobe.2021.103259