DOI QR코드

DOI QR Code

Damage detection in truss bridges using transmissibility and machine learning algorithm: Application to Nam O bridge

  • Nguyen, Duong Huong (Department of Electrical energy, metals, mechanical constructions and systems, Faculty of Engineering and Architecture, Ghent University) ;
  • Tran-Ngoc, H. (Department of Electrical energy, metals, mechanical constructions and systems, Faculty of Engineering and Architecture, Ghent University) ;
  • Bui-Tien, T. (Department of Bridge and Tunnel Engineering, Faculty of Civil Engineering, University of Transport and Communications) ;
  • De Roeck, Guido (Department KU Leuven, Department of Civil Engineering, Structural Mechanics) ;
  • Wahab, Magd Abdel (Division of Computational Mechanics, Ton Duc Thang University)
  • 투고 : 2019.08.13
  • 심사 : 2020.03.30
  • 발행 : 2020.07.25

초록

This paper proposes the use of transmissibility functions combined with a machine learning algorithm, Artificial Neural Networks (ANNs), to assess damage in a truss bridge. A new approach method, which makes use of the input parameters calculated from the transmissibility function, is proposed. The network not only can predict the existence of damage, but also can classify the damage types and identity the location of the damage. Sensors are installed in the truss joints in order to measure the bridge vibration responses under train and ambient excitations. A finite element (FE) model is constructed for the bridge and updated using FE software and experimental data. Both single damage and multiple damage cases are simulated in the bridge model with different scenarios. In each scenario, the vibration responses at the considered nodes are recorded and then used to calculate the transmissibility functions. The transmissibility damage indicators are calculated and stored as ANNs inputs. The outputs of the ANNs are the damage type, location and severity. Two machine learning algorithms are used; one for classifying the type and location of damage, whereas the other for finding the severity of damage. The measurements of the Nam O bridge, a truss railway bridge in Vietnam, is used to illustrate the method. The proposed method not only can distinguish the damage type, but also it can accurately identify damage level.

키워드

과제정보

The authors acknowledge the financial support of VLIR-UOS TEAM Project, VN2018TEA479A103, 'Damage assessment tools for Structural Health Monitoring of Vietnamese infrastructures", funded by the Flemish Government

참고문헌

  1. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641
  2. Barai, S. and Pandey, P. (1997), "Time-delay neural networks in damage detection of railway bridges", Adv. Eng. Software, 28(1), 1-10. https://doi.org/10.1016/S0965-9978(96)00038-5
  3. Brincker, R., Andersen, P. and Zhang, L. (2002), "Modal identification and damage detection on a concrete highway bridge by frequency domain decomposition", The Structural Engineering World Conference: SEWC. Citeseer.
  4. Brownjohn, J.M. (2006), "Structural health monitoring of civil infrastructure", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 589-622. https://doi.org/10.1098/rsta.2006.1925
  5. Brownjohn, J., Rizos, C., Tan, G.-H. and Pan, T.-C. (2004), "Realtime long-term monitoring and static and dynamic displacements of an office tower, combining RTK GPS and accelerometer data".
  6. Cruz, P.J. and Salgado, R. (2009), "Performance of vibrationbased damage detection methods in bridges", Comput.-Aid. Civil Infrastruct. Eng., 24(1), 62-79. https://doi.org/10.1111/j.1467-8667.2008.00546.x
  7. Deraemaeker, A., Preumont, A., Reynders, E., De Roeck, G., Kullaa, J., Lamsa, V., Worden, K., Manson, G., Barthorpe, R. and Papatheou, E. (2010), "Vibration-based structural health monitoring using large sensor networks", Smart Struct. Syst., Int. J., 6(3), 335-347. https://doi.org/10.12989/sss.2010.6.3.335
  8. Devriendt, C. and Guillaume, P. (2008), "Identification of modal parameters from transmissibility measurements", J. Sound Vib., 314(1-2), 343-356. https://doi.org/10.1016/j.jsv.2007.12.022
  9. Dooms, D., Jansen, M., De Roeck, G., Degrande, G., Lombaert, G., Schevenels, M. and Francois, S. (2010), "StaBIL: A Finite Element Toolbox for Matlab", VERSION 2.0 USER'S GUIDE.
  10. Farrar, C.R. and Worden, K. (2006), "An introduction to structural health monitoring", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 303-315. https://doi.org/10.1098/rsta.2006.1928
  11. Fawcett, T. (2004), "ROC graphs: Notes and practical considerations for researchers", Machine Learning, 31(1), 1-38.
  12. Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", CMCCOMPUTERS MATERIALS & CONTINUA, 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660
  13. Hakim, S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks-a review", Smart Struct. Syst., Int. J., 14, 159-189. https://doi.org/10.12989/sss.2014.14.2.159
  14. Johnson, T.J. and Adams, D.E. (2002), "Transmissibility as a differential indicator of structural damage", J. Vib. Acoust., 124(4), 634-641. https://doi.org/10.1115/1.1500744
  15. Kaveh, A. and Maniat, M. (2015), "Damage detection based on MCSS and PSO using modal data", Smart Struct. Syst., Int. J., 15(5), 1253-1270. https://doi.org/10.12989/sss.2015.15.5.1253
  16. Koo, K.-Y., Brownjohn, J., List, D. and Cole, R. (2013), "Structural health monitoring of the Tamar suspension bridge", Struct. Control Health Monitor., 20(4), 609-625. https://doi.org/10.1002/stc.1481
  17. Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B. and Jung, H.Y. (2005), "Neural networks-based damage detection for bridges consi1dering errors in baseline finite element models", J. Sound Vib., 280(3-5), 555-578. https://doi.org/10.1016/j.jsv.2004.01.003
  18. Maeck, J., Peeters, B. and De Roeck, G. (2001), "Damage identification on the Z24 bridge using vibration monitoring", Smart Mater. Struct., 10(3), 512. https://doi.org/10.1088/0964-1726/10/3/313
  19. Maia, N., Silva, J., Almas, E. and Sampaio, R. (2003), "Damage detection in structures: from mode shape to frequency response function methods", Mech. Syst. Signal Process., 17(3), 489-498. https://doi.org/10.1006/mssp.2002.1506
  20. Maia, N.M., Almeida, R.A., Urgueira, A.P. and Sampaio, R.P. (2011), "Damage detection and quantification using transmissibility", Mech. Syst. Signal Process., 25(7), 2475-2483. https://doi.org/10.1016/j.ymssp.2011.04.002
  21. Mehrjoo, M., Khaji, N., Moharrami, H. and Bahreininejad, A. (2008), "Damage detection of truss bridge joints using Artificial Neural Networks", Expert Syst. Applicat., 35(3), 1122-1131. https://doi.org/10.1016/j.eswa.2007.08.008
  22. Meruane, V. (2015), "Online sequential extreme learning machine for vibration-based damage assessment using transmissibility data", J. Comput. Civil Eng., 30(3), 04015042. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000517
  23. Nguyen, H.D., Bui, T.T., De Roeck, G. and Wahab, M.A. (2018), "Damage Detection in Simply Supported Beam Using Transmissibility and Auto-Associative Neural Network", International Conference on Numerical Modelling in Engineering, pp. 177-186.
  24. Nguyen, D.H., Bui, T.T., De Roeck, G. and Wahab, M.A. (2019a), "Damage detection in Ca-Non Bridge using transmissibility and artificial neural networks", Struct. Eng. Mech., Int. J., 71(2), 175-183. https://doi.org/10.12989/sem.2019.71.2.175
  25. Nguyen, T.Q., Nguyen, T.T., Nguyen-Xuan, H. and Ngo, N.K. (2019b), "A Correlation Coefficient Approach for Evaluation of Stiffness Degradation of Beams Under Moving Load", Comput. Mater. Continua, 61(1), 27-53. https://doi.org/10.32604/cmc.2019.07756
  26. Nguyen, T.Q., Tran, L.Q., Nguyen-Xuan, H. and Ngo, N.K. (2019c), "A statistical approach for evaluating crack defects in structures under dynamic responses", Nondestruct. Test. Eval., 1-32. https://doi.org/10.1080/10589759.2019.1699086
  27. Peeters, B. and De Roeck, G. (2001), "One-year monitoring of the Z24-Bridge: environmental effects versus damage events", Earthq. Eng. Struct. Dyn., 30(2), 149-171. https://doi.org/10.1002/1096-9845(200102)30:2<149::AIDEQE1>3.0.CO;2-Z
  28. Peeters, B., Maeck, J. and De Roeck, G. (2001), "Vibration-based damage detection in civil engineering: excitation sources and temperature effects", Smart Mater. Struct., 10(3), 518. https://doi.org/10.1088/0964-1726/10/3/314
  29. Roeck, G.D. (2003), "The state-of-the-art of damage detection by vibration monitoring: the SIMCES experience", J. Struct. Control, 10(2), 127-134. https://doi.org/10.1002/stc.20
  30. Sahin, M. and Shenoi, R. (2003), "Quantification and localisation of damage in beam-like structures by using artificial neural networks with experimental validation", Eng. Struct., 25(14), 1785-1802. https://doi.org/10.1016/j.engstruct.2003.08.001
  31. Sampaio, R., Maia, N., Ribeiro, A. and Silva, J. (2001), "Transmissibility techniques for damage detection", Proceedings of the International Modal Analysis Conference, pp. 1524-1527.
  32. Sanayei, M., Phelps, J.E., Sipple, J.D., Bell, E.S. and Brenner, B.R. (2011), "Instrumentation, nondestructive testing, and finiteelement model updating for bridge evaluation using strain measurements", J. Bridge Eng., 17(1), 130-138. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000228
  33. Specht, D.F. (1991), "A general regression neural network", IEEE Transact. Neural Networks, 2(6), 568-576. https://doi.org/10.1109/72.97934
  34. Thyagarajan, S., Schulz, M., Pai, P. and Chung, J. (1998), "Detecting structural damage using frequency response functions", J. Sound Vib., 210(1), 162-170. https://doi.org/10.1006/jsvi.1997.1308
  35. Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T., Nguyen-Ngoc, L. and Abdel Wahab, M. (2018), "Model updating for Nam O bridge using particle swarm optimization algorithm and genetic algorithm", Sensors, 18(12), 4131. https://doi.org/10.2749/101686697780494563
  36. Wahab, M.A. and De Roeck, G. (1997), "Effect of temperature on dynamic system parameters of a highway bridge", Struct. Eng. Int., 7(4), 266-270. https://doi.org/10.2749/101686697780494563
  37. Wahab, M.A. and De Roeck, G. (1999), "Damage detection in bridges using modal curvatures: application to a real damage scenario", J. Sound Vib., 226(2), 217-235. https://doi.org/10.1006/jsvi.1999.2295
  38. Weinstein, J.C., Sanayei, M. and Brenner, B.R. (2018), "Bridge damage identification using artificial neural networks", J. Bridge Eng., 23(11), 04018084. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001302
  39. Worden, K., Manson, G. and Allman, D. (2003), "Experimental validation of a structural health monitoring methodology: Part I. Novelty detection on a laboratory structure", J. Sound Vib., 259(2), 323-343. https://doi.org/10.1006/jsvi.2002.5168
  40. Wu, X., Ghaboussi, J. and Garrett Jr, J. (1992), "Use of neural networks in detection of structural damage", Comput. Struct., 424), 649-659. https://doi.org/10.1016/0045-7949(92)90132-J
  41. Yan, Y., Cheng, L., Wu, Z. and Yam, L. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Process., 21(5), 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002
  42. Yan, W.-J., Zhao, M.-Y., Sun, Q. and Ren, W.-X. (2019), "Transmissibility-based system identification for structural health Monitoring: Fundamentals, approaches, and applications", Mech. Syst. Signal Process., 117, 453-482. https://doi.org/10.1016/j.ymssp.2018.06.053
  43. Yeung, W. and Smith, J. (2005), "Damage detection in bridges using neural networks for pattern recognition of vibration signatures", Eng. Struct., 27(5), 685-698. https://doi.org/10.1016/j.engstruct.2004.12.006
  44. Zang, C. and Imregun, M. (2001), "Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection", J. Sound Vib., 242(5), 813-827. https://doi.org/10.1006/jsvi.2000.3390
  45. Zhou, Y.L. (2015), "Structural health monitoringby using transmissibility", Industriales.
  46. Zhou, Y.-L. and Abdel Wahab, M. (2017), "Damage detection using vibration data and dynamic transmissibility ensemble with auto-associative neural network", Mechanika, 23, 688-695. https://doi.org/10.5755/j01.mech.23.5.15339
  47. Zhou, Y.-L. and Wahab, M.A. (2016), "Rapid early damage detection using transmissibility with distance measure analysis under unknown excitation in long-term health monitoring", J. Vibroeng., 18(7), 4491-4499. https://doi.org/10.21595/jve.2016.17226
  48. Zhou, Y.-L., Figueiredo, E., Maia, N. and Perera, R. (2015), "Damage detection and quantification using transmissibility coherence analysis", Shock Vib., 2015. https://doi.org/10.1155/2015/290714
  49. Zhou, Y.-L., Maia, N.M., Sampaio, R.P. and Wahab, M.A. (2017), "Structural damage detection using transmissibility together with hierarchical clustering analysis and similarity measure", Struct. Health Monitor., 16(6), 711-731. https://doi.org/10.1177/1475921716680849
  50. Zhou, Y.-L., Maia, N.M. and Abdel Wahab, M. (2018), "Damage detection using transmissibility compressed by principal component analysis enhanced with distance measure", J. Vib. Control, 24(10), 2001-2019. https://doi.org/10.1177/1077546316674544

피인용 문헌

  1. Damage detection in structures using Particle Swarm Optimization combined with Artificial Neural Network vol.28, pp.1, 2021, https://doi.org/10.12989/sss.2021.28.1.001