DOI QR코드

DOI QR Code

In situ dynamic investigation on the historic "İskenderpaşa" masonry mosque with non-destructive testing

  • Gunaydin, Murat (Department of Civil Engineering, Karadeniz Technical University)
  • Received : 2019.12.20
  • Accepted : 2020.04.03
  • Published : 2020.07.25

Abstract

Turkey is a transcontinental country located partly in Asia and partly in Europe, and hosted by diverse civilizations including Hittite, Urartu, Lydia, Phrygia, Pontius, Byzantine, Seljuk's and Ottomans. At various times, these built many historic monuments representing the most significant characteristics of their civilizations. Today, these monuments contribute enormously to the esthetic beauty of environment and important to many cities of Turkey in attracting tourism. The survival of these monuments depends on the investigation of structural behavior and implementation of needed repairing and/or strengthening applications. Hence, many countries have made deeper investigations and regulations to assess their monuments' structural behavior. This paper presents the dynamic behavior investigation of a monumental masonry mosque, the "İskenderpaşa Mosque" in Trabzon (Turkey), by performing an experimental examination with non-destructive testing. The dynamic behavior investigation was carried out by determining the dynamic characteristic called as natural frequencies, mode shapes and damping ratios. The experimental dynamic characteristics were extracted by Operational Modal Analysis (OMA). In addition, Finite Element (FE) model of masonry mosque was constructed in ANSYS software and the numerical dynamic characteristics such as natural frequencies and mode shapes were also obtained and compared to experimental ones. The paper aims at presenting the non-destructive testing procedure of a masonry mosque as well as the comparison of experimental and numerical dynamic characteristics obtained from the mosque.

Keywords

Acknowledgement

This study was practiced by using the measurement system provided by the projects from TUBITAK and Karadeniz Technical University under Research Grant Nos. 106M038, 2005.112.001.1 and 2006.112.001.1, respectively. The author would like to thank Res. Asst. Ali Fuat GENÇ and Res. Asst. Fatih Yesevi OKUR for the assistance during the dynamic monitoring

References

  1. Acici, F.K. (2017), "Iskender pasha mosque and kulliye (Turkish-Ottoman social complex) as a Turkish era structure", Int. Refer. J. Des. Arch., 10, 275-289.
  2. Altunisik, A.C., Kanbur, B. and Genc, A.F. (2015a), "The effect of arch geometry on the structural behavior of masonry bridges", Smart Struct. Syst., Int. J., 16(6), 1069-1089. https://doi.org/10.12989/sss.2015.16.6.1069
  3. Altunisik, A.C., Bayraktar, A. and Genc, A.F. (2015b), "Determination of the restoration effect on the structural behavior of masonry arch bridges", Smart Struct. Syst., Int. J., 16(1), 101-139. https://doi.org/10.12989/sss.2015.16.1.101
  4. Altunisik, A.C., Bayraktar, A. and Genc, A.F. (2016a), "A study on seismic behaviour of masonry mosques after restoration", Earthq. Struct., Int. J., 10(6), 1331-1346. https://doi.org/10.12989/eas.2016.10.6.1331
  5. Altunisik, A.C., Adanur, S., Genc, A.F., Gunaydin, M. and Okur, F.Y. (2016b), "Non-destructive testing of an ancient masonry bastion", J. Cult. Herit., 22, 1049-1054. https://doi.org/10.1016/j.culher.2016.05.008
  6. Altunisik, A.C., Adanur, S., Genc, A.F., Gunaydin, M. and Okur, F.Y. (2017), "An Investigation of the seismic behaviour of an ancient masonry bastion using non-destructive and numerical methods", Exp. Mechs,, 57, 245-259. https://doi.org/10.1007/s11340-016-0239-x
  7. Altunisik, A.C., Okur, F.Y., Genc, A.F., Gunaydin, M. and Karahasan, O. (2018a), "Automated model updating effect on the linear and nonlinear dynamic responses of historical masonry structures", Exp. Tech., 42(6), 605-621. https://doi.org/10.1007/s40799-018-0271-0
  8. Altunisik, A.C., Genc, A.F., Gunaydin, M., Adanur, S. and Okur, F.Y. (2018b), "Ambient vibration-based system identification of a medieval masonry bastion for health assessment using nonlinear analyses", Int. J. Nonl. Sci. Numer. Simul., 19(2-3), 107-124. https://doi.org/10.1515/ijnsns-2017-0004
  9. ANSYS (2015), Swanson Analysis System, US.
  10. Atamturktur, S. and Sevim, B. (2011), "Seismic performance assessment of masonry tile domes through nonlinear finiteelement analysis", J. Perform. Constr. Fac,. 26(4), 410-423. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000243
  11. Bartoli, G., Betti, M. and Giordano, S. (2013), "In situ static and dynamic investigations on the ''Torre Grossa'' masonry tower", Eng. Struct., 52, 718-733. https://doi.org/10.1016/j.engstruct.2013.01.030
  12. Bayraktar, A., Turker, T., Sevim, B., Altunisik, A.C. and Yildirim, F. (2009), "Modal parameter identification of Hagia Sophia Bell-Tower via ambient vibration test", J. Nondestr. Eval., 28, 37-47. https://doi.org/10.1007/s10921-009-0045-9
  13. Bayraktar, A., Altunisik, A.C., Sevim, B. and Turker, T. (2011), "Seismic response of a historical masonry minaret using a finite element model updated with operational modal testing", J. Vib. Control, 17, 129-149. https://doi.org/10.1177/1077546309353288
  14. Bendat, J.S. and Piersol, A.G. (2004), Random Data: Analysis and Measurement Procedures, John Wiley and Sons, USA.
  15. Bergamo, O., Campione, G., Donadello, S. and Russo, G. (2015), "In-situ NDT testing procedure as an integral part of failure analysis of historical masonry arch bridges", Eng. Fail. Anal., 57, 31-55. https://doi.org/10.1016/j.engfailanal.2015.07.019
  16. Binda, L., Tiraboschi, C. and Baronio, G. (2003), "On site investigation on the remains of the Cathedral of Noto", Constr. Build. Mater., 17(8), 543-455. https://doi.org/10.1016/S0950-0618(03)00057-6
  17. Cakir, F., Ergen, Y.B., Uysal, H. and Dogangun, A. (2016), "Influence of modified intended use on the seismic behavior of historical himis structures", Earthq. Struct., Int. J., 10(4), 893-911. https://doi.org/10.12989/eas.2016.10.4.893
  18. Ceroni, F., Sica, S., Pecce, M.R. and Garofano, A. (2014), "Evaluation of the natural vibration frequencies of a historical masonry building accounting for SSI", Soil Dyn. Earthq. Eng., 64, 95-101. https://doi.org/10.1016/j.soildyn.2014.05.003
  19. D'Ambrisi, A., Mariani, V. and Mezzi, M (2012), "Seismic assessment of a historical masonry tower with nonlinear static and dynamic analyses tuned on ambient vibration tests", Eng. Struct., 36, 210-219. https://doi.org/10.1016/j.engstruct.2011.12.009
  20. Damci, E., Temur, R., Bekdas, G. and Sayin, B. (2015), "Damages and causes on the structures during the October 23, 2011 Van earthquake in Turkey", Case Studies Constr. Mater., 3, 112-131. https://doi.org/10.1016/j.cscm.2015.10.001
  21. Demir, A., Nohutcu, H., Ercan, E., Hokelekli, E. and Altintas, G. (2016), "Effect of model calibration on seismic behaviour of a historical mosque", Struct. Eng. Mech., Int. J., 60(5), 749-760. https://doi.org/10.12989/sem.2016.60.5.749
  22. Rovithis, E. and Pitilakis, K. (2016), "Seismic assessment and retrofitting measures of a historic stone masonry bridge", Earthq. Struct., Int. J., 10(3), 645-667. https://doi.org/10.12989/eas.2016.10.3.645
  23. Ewins, D.J. (1984), Modal Testing: Theory and Practice, Research Studies Press Ltd., Baldock, Hertfordshire, England.
  24. Felber, A.J. (1993), "Development of hybrid bridge evaluation system", Ph.D. Dissertation; University of British Columbia, Vancouver, Canada.
  25. Fragonara, L.Z., Boscato, G., Ceravolo, R., Russo, S., Ientile, S., Pecorelli, M.L. and Quattrone, A. (2017), "Dynamic investigation on the Mirandola bell tower in post-earthquake scenarios", Bull. Earthq. Eng., 15, 313-337. https://doi.org/10.1007/s10518-016-9970-z
  26. Gentile, C. and Saisi, A. (2007), "Ambient vibration testing of historic masonry towers for structural identification and damage assessment", Constr. Build. Mater., 21(6), 1311-1321. https://doi.org/10.1016/j.conbuildmat.2006.01.007
  27. Gunaydin, M. (2018), "Experimental determination of the dynamic characteristics of a historical masonry minaret after repairing", Gufbed/Gustij, 8(2), 381-395.
  28. Jacobsen, N.J., Andersen, P. and Brincker, R. (2006), "Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in Operational Modal Analysis", Proceedings of ISMA2006: International Conference on Noise & Vibration Engineering, Leuven, Belgium.
  29. Karaca, Z., Turkeli, E. and Pergel, S. (2017), "Seismic assessment of historical masonry structures: The case of Amasya Tashan", Comput. Concrete, Int. J., 20(4), 409-418. https://doi.org/10.12989/cac.2017.20.4.409
  30. Kocaturk, T. and Erdogan, Y.S. (2016), "Earthquake behavior of M1 minaret of historical Sultan Ahmed Mosque (Blue Mosque)", Struct. Eng. Mech., Int. J., 59(3), 539-558. https://doi.org/10.12989/sem.2016.59.3.539
  31. Lorenzoni, F., Caldon, M., Parto, F da., Modena, C. and Aoki, T. (2018), "Post-earthquake controls and damage detection through structural health monitoring: applications in l'Aquila", J. Civil Struct. Health Monit., 8, 217-236. https://doi.org/10.1007/s13349-018-0270-y
  32. Lourenco, P.B. (2002), "Computations of historical masonry constructions", Prog. Struct. Eng., 4(3), 301-319. https://doi.org/10.1002/pse.120
  33. Macchi, G. (1993), "Monitoring medieval structures in Pavia", Struct. Eng. Int., 3(1), 6-9. https://doi.org/10.2749/101686693780607967
  34. Nohutcu, H., Hokelekli, E., Ercan, E., Demir, A. and Altintas, G. (2017), "Collapse mechanism estimation of a historical slender minaret")", Struct. Eng. Mech., Int. J., 64(5), 653-660.
  35. OMA (2006), Operational Modal Analysis, Release 4.0. Structural Vibration Solutions A/S, Denmark.
  36. Parisi, F. and Augenti, N. (2013), "Earthquake damages to cultural heritage constructions and simplified assessment of artworks", Eng. Fail. Anal., 34, 735-760. https://doi.org/10.1016/j.engfailanal.2013.01.005
  37. Peeters, B. (2000), "System identification and damage detection in civil engineering", Ph.D. Dissertation; K.U. Leuven, Belgium.
  38. Pieraccini, M., Dei, D., Betti, M., Bartoli, G., Tucci, G. and Guardini, N. (2014), "Dynamic identification of historic masonry towers through an expeditious and no-contact approach: application to the "Torre Del Mangia" in Siena (Italy)", J. Cult. Herit., 15(3), 275-282. https://doi.org/10.1016/j.culher.2013.07.006
  39. PULSE (2006), Analyzers and Solutions, Release 11.2. Bruel and Kjaer, Sound and Vibration Measurement A/S, Denmark.
  40. Russo, S. (2016), "Integrated assessment of monumental structures through ambient vibrations and ND tests: The Case of Rialto Bridge", J. Cult. Herit., 19, 402-414. https://doi.org/10.1016/j.culher.2016.01.008
  41. Ramos, L.F., Marques, L., Lourenco, P.B., De Roeck, G., Campos-Costa, A. and Roque, J. (2010), "Monitoring historical masonry structures with operational modal analysis: Two case studies", Mech. Syst. Signal Pr., 24(5), 1291-1305. https://doi.org/10.1016/j.ymssp.2010.01.011
  42. Rainieri, C., Fabbrocino, G., Cosenza, E. and Manfredi, G. (2007), "Implementation of OMA procedures using labview: theory and application", Proceedings of 2nd International Operational Modal Analysis Conference, Copenhagen, Denmark, April-May.
  43. Sayin, E. (2016), "Nonlinear seismic response of a masonry arch bridge", Earthq. Struct., Int. J., 10(2), 483-494. https://doi.org/10.12989/eas.2016.10.2.483
  44. Sevim, B., Bayraktar, A., Altunisik A.C., Atamturktur, S. and Birinci, F. (2011), "Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations", Nonlinear Dyn,, 63(4), 755-770. https://doi.org/10.1007/s11071-010-9835-y
  45. Tuluk, O.I. (2007), "Trabzon Iskender Pasa Camii: Fiziksel gelisim sureci uzerine bir degerlendirme", Uluslararasi Karadeniz Incelemeleri Dergisi, 1, 9-23.
  46. Turker, T. (2014), "Structural evaluation of Aspendos (Belkis) Masonry Bridge", Struct. Eng. Mech., Int. J., 50(4), 419-439. https://doi.org/10.12989/sem.2014.50.4.419
  47. Votsis, R.A., Kyriakides, N., Chrysostomou C.Z, Tantele, E. and Demetriou, T. (2012), "Ambient vibration testing of two masonry monuments in Cyprus", Soil Dyn. Earthq. Eng., 43, 58-68. https://doi.org/10.1016/j.soildyn.2012.07.015